
Aztec •
C

EAN 13
• M

SI Pless

DataMatrix
 • In

terleaved 2 o
f

• Booklan • U
PC E • M

axiCode • A
ztec

 EAN 8 • P
OSTNET • M

SI Plesse
y • C

odaBar •
Inte

 Code 39 • U
PC A • A

ztec •
EAN 13

• PDF 417 •
 Interleaved

• POSTNET • P
DF 417 •

 DataMatrix
 • U

PC E • D
ataMatrix

 • M
S

Aztec •
UPC A • C

odabar •
EAN 13

• M
axiCode • M

axiCode • A

DataMatrix
 • In

terleaved 2 •
 EAN 13

 • P
OSTNET • B

ooklan •

PDF 417 •
 Booklan • U

PC A • A
ztec •

EAN 13
• EAN UCC 128

 •

Bar Code
 DLLs
Bar Code
 DLLs

Easily add professional-quality bar codes
to MS Word and other Windows applications.

A 1 2 3 4 D

C d 1 2 8

A 1 2 3 4 D

1 2 3 4 5 6 7 8 9 0 1 2

 i

Contents:

Contents:.. i
License Agreement: ... 1
Introduction... 3
Installing The Bar Code DLLs On Your Computer... 4
Getting Started.. 4
Overview of graphics programming in Windows .. 5
All about Windows MetaFiles .. 6
How to use the TAL Bar Code Libraries ... 7

Function names and DLL files for creating different bar code symbologies. 7
16 Bit DLL Declarations and Type Structures.. 9

Sample Visual Basic (16 bit) DLL Function Declaration Statements: ... 9
Sample C/C++ (16 bit) DLL Function Declaration Statements: .. 9
16 Bit Visual Basic TALBarCode Type Structure .. 10
16 Bit MetaFilePict Type Structure.. 10
16 Bit C/C++ TALBarCode Type Structure ... 11
16 Bit TALBarCode Type Structure Elements... 12
16 Bit Visual Basic TALPDFBarCode Type Structure... 13
16 Bit C/C++ TALPDFBarCode Type Structure .. 14
16 Bit TALPDFBarCode Type Structure Elements ... 15

32 Bit DLL Declarations and Type Structures.. 16
Sample Visual Basic (32 bit) DLL Function Declaration Statements: ... 16
Sample C/C++ (32 bit) DLL Function Declaration Statements: .. 16
32 Bit Visual Basic TALBarCode Type Structure Declaration... 17
32 Bit Visual Basic MetaFilePict Type Structure Declaration.. 17
32 Bit C/C++ TALBarCode Type Structure Declaration .. 18
32 Bit TALBarCode Type Structure Elements... 19
32 Bit Visual Basic TALPDFBarCode Type Structure Declaration.. 20
32 Bit C/C++ TALPDFBarCode Type Structure Declaration ... 21
32 Bit TALPDFBarCode Type Structure Elements ... 22
TALBarCode Data Type Member Descriptions and Notes.. 23
Parameters Specific to the TALPDFBarCode Type Structure .. 28
Preferences Options and Constants: .. 30

Bar Code Dimensions .. 33
Bar Code Basics ... 34
How A Bar Code Reader Works .. 35
How To Produce Readable Bar Codes ... 36
A Word About Graphic File Formats... 37

Bitmaps (Raster Graphics).. 37
Vector Graphics and MetaFiles... 38
About The New Enhanced MetaFile Format ... 39

Special Considerations and Incompatibilities ... 40
Pasting Bar Codes From The Clipboard Into 32 bit Programs.. 40
Printing Bar Codes On A Dot Matrix Printer .. 41

Bar Code Symbology Descriptions and Rules... 42
CODE 39 (Normal, Full ASCII and HIBC versions)... 42
UPC-A, UPC-E, and UPC Supplementals .. 44

 ii

EAN-8 / EAN-13, BookLan and EAN Supplementals.. 45
UPC and EAN Magnification Factors .. 46
CODE 93... 47
CODABAR .. 47
INTERLEAVED 2 OF 5 (ITF)... 48
MSI-PLESSEY .. 48
CODE 128... 49
EAN/UCC 128... 49
POSTNET ... 50
Postal FIM Patterns .. 50
PDF417... 51
PDF417 Bar Code Dimensions... 52
PDF417 Data Compaction Modes .. 54
PDF417 Error Detection and Correction ... 54
Truncated PDF417 Symbols ... 55
PDF417 Options. .. 56
16 Bit C/C++ TALMatrixCode Type Structure ... 64
32 Bit C/C++ TALMatrixCode Type Structure ... 65
16 Bit C/C++ TALMaxiCode Type Structure ... 76
32 Bit C/C++ TALMaxiCode Type Structure ... 77

Powerbuilder 16 Bit Declarations ... 78
Error Codes Returned by the TAL Bar Code DLLs .. 79

Information in this document is subject to change without notice and does not represent a commitment on the part of TAL Technologies, Inc. The
software described in this document is furnished under a license agreement. The software may be used or copied only in accordance with the terms of
this agreement. It is against the law to copy the software on any medium except as specifically allowed in the license agreement. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any
purpose without the express written consent of TAL Technologies, Inc.
 1994-99 TAL Technologies, Inc. All rights reserved. Printed in the United States of America

 1

License Agreement:

1. GRANT OF LICENSE
TAL Technologies, Inc. grants you the right to use one copy of the enclosed software program (the
SOFTWARE) on a single terminal connected to a single computer (i.e., with a single CPU). You may
not network the SOFTWARE or otherwise use it on more than one computer or computer terminal at
the same time.

2. LICENSE TO DISTRIBUTE DYNAMIC LINK LIBRARIES.

You have a royalty free right to distribute up to ten thousand (10,000) copies of the unmodified
dynamic link libraries (.DLL files) with your own application programs provided you adhere to the
following terms:

a. You must not disclose or distribute the calling parameters for any DLLs or the source code
examples provided with this product, (modified or unmodified).

b. Any product that you create that uses the TAL bar code DLLs must not compete with the TAL bar
code DLLs in any way; e.g.; Your product must not be a software development tool (.EXE, .DLL,
.VBX, .OCX, etc.) intended for distribution to other software developers or system integrators. You
may not extend access to the DLL API in any manner, either directly or indirectly.

c. If you distribute any application that uses any of the TAL bar code DLL files, a valid copyright
notice must be provided within the user documentation and/or start-up screen of your application
that specifies TAL Technologies, Inc. as the legal copyright owner, e.g., "All bar code technology
provided in this product is copyrighted by TAL Technologies, Inc."

d. Distribution of the TAL bar code DLLs in any quantity exceeding ten thousand units is subject to
additional license fees which are due and payable to TAL Technologies, Inc.. A Product Distribution
Disclosure form must be filed quarterly for any product developed and distributed in quantities over
and above 10,000 units. A disclosure form is available from TAL Technologies, Inc. upon request.

e. You must register your ownership of this product with TAL Technologies, Inc. in order to activate
your distribution rights.

 2

3. COPYRIGHT
The SOFTWARE is owned by TAL Technologies, Inc. and is protected by United States copyright
laws and treaties. Therefore, you must treat the SOFTWARE like any other copyrighted material
(e.g., a book or musical recording) except that you may either (a) make one copy of the SOFTWARE
solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided
you keep the original solely for backup or archival purposes. You may not copy the users manual
accompanying the SOFTWARE.

4. OTHER RESTRICTIONS
You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and
accompanying written materials on a permanent basis provided you retain no copies and the
recipient agrees to the terms of this Agreement. You may not reverse engineer, decompile, or
disassemble the SOFTWARE. If SOFTWARE is an update, any transfer must include the update
and all prior versions.

5. DUAL MEDIA SOFTWARE
If the SOFTWARE contains both 3.5" and 5.25" disks, then you may use only the disks appropriate
for your single-user computer. You may not use the other disks on another computer or loan, rent,
lease or transfer them to another user except as part of a permanent transfer (as provided above) of
the SOFTWARE and written materials.

6. DUAL PLATFORM SOFTWARE
If the SOFTWARE contains both 16 bit and 32 bit versions, you may use the version that is
appropriate for your application. You may not use the other disks on another computer or loan, rent,
lease or transfer them to another user except as part of a permanent transfer (as provided above) of
the SOFTWARE and written materials.

7. DISCLAIMER
No Warranty of any kind on the SOFTWARE is expressed or implied.
In no event shall TAL Technologies, Inc. or its suppliers be liable for any damages whatsoever
(including, without limitation, damages for loss of business profit, business interruption, loss of
business information or other pecuniary loss) arising out of the use of or inability to use this product.
Should you have any questions concerning this agreement, or wish to contact TAL Technologies,
Inc. for any reason please write:

 TAL Technologies, Inc.
 Customer Service Dept.
 2027 Wallace Street
 Philadelphia, PA 19130-3221 USA
 Tel: (215)-763-5096 Fax: (215)-763-9711
 e-mail: tal1@taltech.com
 website: http://www.taltech.com

 3

Introduction

Congratulations! You have purchased the most powerful and most versatile bar code programming
tool available for Microsoft Windows. TAL Bar Code DLLs have all the features necessary to easily
add professional quality bar codes to your own Windows applications, including product packaging,
document tracking, Postal bar coding and special purpose bar code labeling applications. Not only
are the TAL Bar Code DLLs powerful, they are also extremely easy to use.

TAL Bar Code DLLs are available for all commonly used bar code symbologies and they allow
complete control over all features of each individual bar code symbology. Features include:
precise control over all bar code dimensions, full selection for both the foreground and background
colors, symbol rotation in 90 degree increments and complete font selection for the human readable
text below a bar code symbol.

Unlike other products that create bitmaps or use fonts, the TAL bar code DLLs produce high
resolution Windows MetaFile (vector) graphics that are completely device independent, fully
scalable, and will print to the highest resolution of any printer supported by Windows. No knowledge
of the printer resolution is required in advance, the graphics that are produced are extremely small in
size and therefore require minimal system resources, and all bar codes produced with the TAL Bar
Code DLLs will display and print lightening fast.

TAL Technologies, Inc. has been providing professional quality bar code products since 1989. The
code in the TAL Bar Code DLL files was originally written for our industry standard "B-Coder"
Professional Bar Code Graphics Generator back in 1991. Many thousands of copies of B-Coder
have been distributed worldwide, therefore you can feel completely confident that the code has been
well tested and thoroughly debugged.

 4

Installing The Bar Code DLLs On Your Computer

The TAL Bar Code DLLs come with a "Setup" program that will install all program files (including
DLL files and sample source code) onto your hard disk to a directory that you specify. The setup
program also creates a TAL Bar Code DLL program group in the Windows Program Manager (or in
the Start Menu for Windows 95) with all program icons in it.

To install the TAL Bar Code DLLs on your PC, place the Setup diskette in your disk drive. Next, open
the Windows Program Manager and select Run from the Program Manager's File menu (or click the
Start button and select RUN in Windows 95). A dialog box will appear where you should enter the
command: A:SETUP (or B:SETUP if using drive B:). After you press the Enter key the Setup
program will prompt you through the rest of the installation.

Getting Started

The TAL Bar Code DLLs are a set of dynamic link libraries that export functions that can be called by
most programming languages (Visual Basic, C/C++, Delphi, Powerbuilder etc.) allowing you to add
extremely high quality bar code graphics to your own application programs. TAL Bar Code DLLs are
sold separately with two DLL files (one 16 bit and one 32 bit DLL) for each of the different bar code
symbologies. The symbologies currently available are:

Symbologies 16 Bit DLL 32 Bit DLL
UPC A and E
(including 2 & 5 digit supplementals)

TALUPC.DLL TALUPC32.DLL

EAN/JAN 8 and 13 , Booklan
(including 2 & 5 digit supplementals)

TALEAN.DLL TALEAN32.DLL

Code 39, Extended Code 39 and HIBC TALC39.DLL TALC3932.DLL
Interleaved 2 of 5 (ITF) TALITF.DLL TALITF32.DLL
Code 128 and EAN/UCC 128 TAL128.DLL TAL12832.DLL
CodaBar TALCBR.DLL TALCBR32.DLL
Code 93 and Extended Code 93 TALC93.DLL TALC9332.DLL
PostNET (Zip+4 and Zip+6) TALZIP.DLL TALZIP32.DLL
PDF417 TALPDF.DLL TALPDF32.DLL
Data Matrix TALDM.DLL TALDM32.DLL
Aztec Code TALAZTEC.DLL TALAZT32.DLL
MaxiCode TALMAX16.DLL TALMAX32.DLL

 5

Overview of graphics programming in Windows

Windows provides a rich set of functions for displaying and printing many different types of graphics
on practically any output device including your display and all printers that have a Windows printer
driver. The portion of Windows that handles all graphics output is called GDI (Graphic Device
Interface). GDI is actually a DLL that contains a large number of Windows API functions that
programs can call to do standard operations like drawing text, displaying graphics, and painting
windows, menus, buttons or other graphic elements.

A device driver provided by the manufacturer of a particular output device actually does all the work
of rendering graphics however every device driver must interface to the Windows GDI in a standard
way so that a Windows programmer need not be concerned with the details of a particular device.
All the programmer needs to worry about is how to select or identify an output device and then how
to call functions in the GDI to render graphics on it.

For example, the Windows GDI provides a function called TextOut that will draw a string of text on
any output device. The call to TextOut requires five parameters; a variable called a "hDC" (Device
Context Handle), an X position, a Y position, the string to print and a count of characters in the
string. The device context handle (hDC) is simply a number that identifies the particular device or
window that you want to output to.

There are many types of "handles" in Windows however the two most often used are "Window
Handles" (hWND) and "Device Context Handles" (hDC). A hWND identifies a screen window and a
hDC identifies an output device. Since a window can also be used as an output device, every
window also has an hDC. You can think of a hDC as a property of a window object. Because printers
do not have windows, they do not have hWNDs however they do have hDCs. In other words every
window is a device but not every device is a window.

To retrieve a hDC for a window, you must call the Windows API GetDC function passing it a hWND
parameter. To retrieve a hDC for a printer, you must call the CreateDC function passing it the name
of the printer driver that you want to use. Some programming languages, like Visual Basic, make the
process of retrieving hDCs and hWNDs extremely easy by providing them as properties of window
or printer objects. For example the hDC for the default printer can easily be obtained in Visual Basic
using the hDC property of the Printer object, (i.e. Printer.hDC.) The hDC for a form can be obtained
using the notation FormName.hDC.

Once you have a hDC for a device or window you can simply call GDI functions to output text and
graphics directly onto the device without having to worry at all about what type of device it is. The
TAL Bar Code libraries create Windows MetaFile graphics that can be passed back to your
application in the form of a "MetaFile Handle" (hMF). The Windows GDI function PlayMetaFile can
then be used to draw the MetaFile to a device context. As you may have guessed, the PlayMetaFile
function requires two parameters, a hDC and a hMF. If you prefer, you can even pass a hDC to any
of the TAL Bar Code DLL functions and have the DLL do all the work of playing the MetaFile directly
on the device for you.

 6

If the programming language that you are using does not provide access to hDCs, you will have to
use a different approach to include bar codes. The TAL Bar Code DLLs provide several output
options including output to the Windows Clipboard, and output to a disk file. If your programming
language can pull in Windows MetaFiles from either the clipboard or from a disk file, then you should
still be able to use the TAL Bar Code DLLs.

All about Windows MetaFiles

A Windows MetaFile is a standard type of graphic that uses the native graphics "language" of the
Windows GDI. As mentioned above, the Windows GDI is a set of graphics functions that allow you
to create and render many types of graphics. The GDI also contains many drawing functions that
allow you to draw lines, rectangles, polygons, text and other graphic elements onto a device.

Most Windows GDI drawing functions require only a hDC and a set of dimensions or coordinates in
order to render a graphic element and are therefore considered to be "device independent". If you
call a GDI drawing function to draw a rectangle that is one inch square, you will always get a one
inch square rectangle no matter what device you output to. GDI functions also allow extremely
precise control over the dimensions of all graphic elements therefore you can use GDI functions to
create extremely precise graphics. This makes GDI functions ideal for creating bar codes because
the widths of the bars and spaces in a bar code must be drawn with extreme precision.

You can think of a Windows MetaFile as simply a recording of a series of GDI function calls that are
stored either in memory or to a disk file (.WMF file). Because only the drawing instructions are
stored in a MetaFile and not an actual bitmap type graphic, MetaFiles are much smaller than any
other graphic format. Because the Windows GDI is device independent, so are all Windows
MetaFile graphics. Also, because the Windows GDI offers extremely precise control over graphic
dimensions (to .01 mm), Windows MetaFiles can be extremely precise as well. To give you an idea
of the precision, .01mm is approximately the width of a single printer dot on a 2400 DPI printer. As
an added bonus, Windows MetaFiles use far less system resources and both display and print much
faster than any other type of graphic. In fact, no other graphic format offers the same combination of
precision, speed, small size and portability as provided by the WMF format.

Windows MetaFiles can either be stored in memory or to a disk file. If a MetaFile is stored in
memory, it is accessed through a MetaFile handle (hMF). A standard Windows type structure called
a MetaFilePict is used to provide additional information about a MetaFile. The MetaFilePict structure
contains four numeric elements; an x and a y dimension representing the overall width and height of
the MetaFile, a mapping mode which represents the units for the x and y dimensions and, of course,
a hMF that is used to access the actual MetaFile data.

To render a MetaFile on a device, the Windows GDI provides a single function PlayMetaFile. As
mentioned above, the PlayMetaFile function requires only a hDC and a hMF therefore outputting a
MetaFile to a device is almost trivially easy.

Note: Microsoft's website (www.microsoft.com) is an excellent source of information about MetaFiles
including an ample amount of sample source code for handling MetaFiles and converting between
all MetaFile formats. Simply log on and perform a search for the word "MetaFile".

 7

How to use the TAL Bar Code Libraries

Each of the TAL Bar Code libraries contain a single function that you pass two type structures to.
The first structure (a TALBarCode structure for all 1 dimensional bar codes, a TALPDFBarCode for
PDF417, a TALMatrixCode for Aztec and Data Matrix and a TALMaxiCode for MaxiCode) contains
all the parameters necessary to create your bar codes including the message to encode, the height,
the foreground and background colors and many other options that determine how the bar code
should be produced. The second type structure is a standard Windows MetaFilePict structure that
is returned to your application to provide information about the bar code that was produced including
the overall x and y dimensions of the bar code, the mapping mode or units of the x and y dimensions
and also a handle to a memory based Windows MetaFile if you set up the DLL call to output to a
memory MetaFile. Each bar code function returns a value (a 2 byte Integer for the 16 bit DLLs or a 4
byte Long Integer for the 32 bit DLLs) that will be zero if the function is successful otherwise it will
contain an error code indicating why it failed. The TALBarCode and the TALPDFBarCode structures
provide input data to the DLL call and the MetaFilePict structure provides output data from the DLL
call.
Note: The DLLs ignore any input data passed in the MetaFilePict structure therefore you do not have
to worry about clearing the input values of this structure before you call the DLL.

The TALBarCode type structure contains a parameter called "OutputOption" that instructs the
function how to output the bar code. Four options are available; You can output the bar code to the
Windows Clipboard, save it to a disk file, store it to a memory MetaFile or you can output directly to
a device context handle (hDC). If you output your bar codes to a memory MetaFile, you are
responsible for rendering the bar code on a device context (i.e. screen or printer) and also for
deleting the memory MetaFile when you are done with it. If you output directly to a device context
handle, the DLL will actually render the MetaFile on the device and also delete the MetaFile from
memory before returning control to your application.

Function names and DLL files for creating different bar code symbologies.

Function DLL File 32 Bit DLL Symbologies Supported in DLL
TALCode39 TALC39.dll TALC3932.dll Code 39, Extended Code 39 and HIBC
TALCodaBar TALCBR.dll TALCBR32.dll CodaBar
TALCode93 TALC93.dll TALC9332.dll Code 93 and Extended Code 93
TALCode128 TAL128.dll TAL12832.dll Code 128 and EAN/UCC 128
TALI2of5 Lib TALITF.dll TALITF32.dll Interleaved 2 of 5
TALPostNet TALZIP.dll TALZIP32.dll PostNET (Zip+4 and Zip+6)
TALUPC TALUPC.dll TALUPC32.dll UPC A and UPC E
TALEAN TALEAN.dll TALEAN32.dll EAN 8, EAN 13 and Booklan
TALPLESSEY TALMSI.dll TALMSI32.dll MSI-Plessey
TALPDFCode TALPDF.dll TALPDF32.dll PDF417
TALDMX TALDM.dll TALDM32.dll Data Matrix
TALAZTEC TALAZTEC.dll TALAZT32.dll Aztec Code
TALMaxi TALMAX16.dll TALMAX32.dll Maxicode

 8

Note: Some compilers are case sensitive regarding function names while others may require
function names declared in all upper case. If your compiler complains that it "cannot find an entry
point" for a DLL function, try changing the function name in the declaration to all upper case.

 9

16 Bit DLL Declarations and Type Structures

Sample Visual Basic (16 bit) DLL Function Declaration Statements:

Declare Function TALCode39 Lib "TALC39.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALCodaBar Lib "TALCBR.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function Lib TALCode93 "TALC93.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALCode128 Lib "TAL128.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALI2of5 Lib "TALITF.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALPostNet Lib "TALZIP.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALUPC Lib "TALUPC.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALEAN Lib "TALEAN.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALPLESSEY Lib "TALMSI.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALPDFCode Lib "TALPDF.dll" (BC As TALPDFBarCode, MetaPict As MetaFilePict) As Integer
Declare Function TALDMX Lib "TALDM.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Integer
Declare Function TALAZTEC Lib "TALAZTEC.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Integer
Declare Function TALMAXI Lib "TALMAX16.DLL" (BC As TALMaxiCode, MetaPict As MetaFilePict) As Integer

Sample C/C++ (16 bit) DLL Function Declaration Statements:

extern "C"
{
int FAR PASCAL TALCode39 (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALCodaBar (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALCode93 (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALCode128 (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALI2of5 (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALPostNet (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALUPC (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALEAN (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALPLESSEY (TALBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALPDFCode (TALPDFBarCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALAZTEC (TALMatrixCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALDMX (TALMatrixCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALMAXI (TALMaxiCode * barcode, METAFILEPICT * metapict);
};

Note: The METAFILEPICT type structure is a standard Windows data structure therefore if you are
writing your application in C/C++ then you do not have to declare this structure if you reference the
INCLUDE file Windows.h in your project.

 10

16 Bit Visual Basic TALBarCode Type Structure
(all normal 1 dimensional bar codes)

The following is a 16 Bit Visual Basic type declaration for the TALBarCode data type with comments
indicating the purpose of each individual data member. Refer to the 16 Bit DLL Declarations and
Type Structures for a more detailed description of each data member.

Type TALBarCode
 MessageLength As Integer ' Length of message to be encoded
 MessageBuffer As String * 100 ' Message buffer
 CommentLength As Integer ' Length of comment
 CommentBuffer As String * 100 ' Comment buffer
 NarrowBarWidth As Integer ' Narrow Bar Width in units of .01 mm
 BarWidthReduction As Integer ' Percent of NarrowBarWidth (see notes for details)
 BarCodeHeight As Integer ' Height of Bars in units of .01 mm
 FGColor As Long ' Foreground RGB color
 BGColor As Long ' Background RGB color
 NarrowToWideRatio As Integer ' Integer 20-30 (20=2.0 to 30=3.0) (see notes for details)
 FontName As String * 32 ' Font name for human readable text and comment
 FontSize As Integer ' Font size in points
 TextColor As Long ' Text color - RGB color value
 Orientation As Integer ' Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 Preferences As Long ' Bit values as described below
 HorizontalDPI As Integer ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Integer ' flag is set in Preferences (see notes for details)
 OutputOption As Integer ' 0=Clipboard, 1=SaveToFile, 2=MetaFilePict, 3=hDC

' (see notes for details)
 OutputFilename As String * 68 ' ASCIIZ filename when saving to disk (null terminated)
 OutputhDC As Integer ' Output device context when outputting to hDC
 XPosInInches As Single ' X position when outputting to hDC (see notes for details)
 YPosInInches As Single ' Y position when outputting to hDC (see notes for details)
 Reserved As Long ' Reserved for future use
End Type

16 Bit MetaFilePict Type Structure

The MetaFilePict data structure is a standard Windows API data structure. The following is a sample
Visual Basic declaration for the MetaFilePict data type. Note for 32 bit Windows, all members of the
MetaFilePict structure should be declared as "Long" instead of "Integer".

Type MetaFilePict ' 16 bit MetaFilePict type structure
 mm As Integer ' MetaFile map mode - this will always be MM_ANISOTROPIC (8)
 xExt As Integer ' width of the MetaFile in units of .01 mm
 yExt As Integer ' height of the MetaFile
 hMf As Integer ' handle to the actual MetaFile in memory
End Type

 11

16 Bit C/C++ TALBarCode Type Structure
(for all normal 1 dimensional bar codes)

The following is a 16 Bit C/C++ declaration for the TALBarCode data type with comments indicating
the purpose of each individual data member. Refer to the 16 Bit DLL Declarations and Type
Structures for a more detailed description of each data member.

typedef struct tagTALBarCode
{
 int messageLength; // Length of message to be encoded
 char messageBuffer[100]; // Message buffer
 int commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 int narrowBarWidth; // Narrow Bar Width in units of .01 mm
 int barWidthReduction; // Percent of narrowBarWidth
 int barCodeHeight; // Height of Bars in units of .01 mm
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 int narrowToWideRatio; // 20-30 (20=2.0 to 30=3.0) (see notes for details)
 char fontName[32]; // Font name for human readable text
 int fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 int orientation; // Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 int horizontalDPI; // Printer DPI values used when AdjustToPrinterDPI
 int verticleDPI; // flag is set in Preferences (see notes below)
 int outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[68]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALBarCode;

 12

16 Bit TALBarCode Type Structure Elements
(for all normal 1 dimensional bar codes)
Parameter Data Type Bytes Purpose Will Default?
MessageLength Integer 2 Specifies the length of the

message to be encoded
No - Error is returned if length is
zero or >100

MessageBuffer Character 100 Contains the message to be
encoded

No

CommentLength Integer 2 Specifies the length of the
comment text

No - Error is returned if length is
zero or >100

CommentBuffer Character 100 Contains the comment string No
NarrowBarWidth Integer 2 Width of the narrow bars in

units of .01 mm
Yes, default is 33 (13 mils)

BarWidthReduction Integer 2 Percentage of bar width
reduction (or gain) Allowable
range is 99% to -99% (gain)

Yes , default is 0 (i.e. no bar
width reduction or gain)

BarCodeHeight Integer 2 Height of the bars in units of
.01 mm (not including
message text or comment)

Yes, default is 2540 (1 inch)

FGColor Long 4 Specifies the foreground RGB
color for all bars

Yes, default is Black (&H0F)

BGColor Long 4 Specifies the background RGB
color. If set to &HFFFFFFFF
then background is transparent

Yes, default is White
(&HFFFFFF) if FGColor=0 and
BGColor = 0

NarrowToWideRatio Integer 2 Specifies the narrow to wide
bar width ratio - can range from
20 to 30 representing 2.0 to 3.0

Yes, default is 25 representing a
narrow to wide ratio of 2.5

FontName Character
(ASCIIZ)

32 Name of the font for all human
readable text

Yes, default is the System font

FontSize Integer 2 Point size for text font Yes, default is 10 points
TextColor Long 4 RGB color for human readable

text
No

Orientation Integer 2 Specifies rotation in 90 degree
increments (0 - 3)

Yes, default is 0 or no rotation

Preferences Long 4 See description of preferences
below

Yes, default is 0

HorizontalDPI Integer 2 Horizontal dots per inch for
output device. see notes
below

No - not required if
AdjustToPrinterDPI preferences
option is not enabled

VerticalDPI Integer 2 Vertical dots per inch for output
device. see notes below

No - not required if
AdjustToPrinterDPI preferences
option is not enabled

OutputOption Integer 2 Specifies how to output the bar
code. see notes below

No

OutputFilename Character
(ASCIIZ)

68 Output file name. required if
outputting to a disk file

No - not required unless
outputting to a disk file

OutputhDC Integer 2

Device context handle for
output device. required if
outputting to a device context

No - not required unless
outputting to a device context

XPosininches Single 4 X coordinate for output
position. used when outputting
to a device context

Yes, default is 0

YPosininches Single 4 Y coordinate for output
position. used when outputting
to a device context

Yes, default is 0

Reserved Long 4 Reserved for future use N/A

 13

16 Bit Visual Basic TALPDFBarCode Type Structure
(2 dimensional PDF417 bar codes)

The following is a 16 Bit Visual Basic type declaration for the TALPDFBarCode data type with
comments indicating the purpose of each individual data member. Refer to the 16 Bit
TALPDFBarCode Type Structure Elements for a more detailed description of each data member.

Type TALPDFBarCode
 MessageLength As Integer ' Length of message to be encoded
 MessageBuffer As String * 2712 ' Message buffer
 CommentLength As Integer ' Length of comment
 CommentBuffer As String * 100 ' Comment buffer
 PDFModuleWidth As Integer ' PDF Module Width
 BarWidthReduction As Integer ' Bar Width Reduction (0 to +-99%)
 PDFModuleHeight As Integer ' PDF Module Height
 PDFAspect As Single ' PDF Symbol Aspect Ratio
 PDFSecurityLevel As Integer ' PDF417 Security Level (0-8 or 9 for automatic)
 PDFCompactionMode As Integer ' PDF Data Compaction Method
 PDFPctOverhead As Integer ' Percent of Error Correction Overhead
 ' (used when automatic Security level option is selected)
 PDFMaxRows As Integer ' Maximum number of rows in the PDF symbol
 PDFMaxCols As Integer ' Maximum number of columns in the PDF symbol
 FGColor As Long ' Foreground RGB color
 BGColor As Long ' Background RGB color
 FontName As String * 32 ' Font name for comment text
 FontSize As Integer ' Font size
 TextColor As Long ' Text color (RGB value)
 Orientation As Integer ' Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 Preferences As Long ' Bit values described below
 HorizontalDPI As Integer ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Integer ' flag is enabled in preferences
 OutputOption As Integer ' 0=Clipboard, 1=SaveToFile, 2=MetaFilePict, 3=hDC
 OutputFilename As String * 68 ' ASCIIZ filename (null terminated)
 OutputhDC As Integer ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position (when outputting to hDC)
 YPosInInches As Single ' Y page position (when outputting to hDC)
 Reserved As Long ' Reserved for future use
End Type

 14

16 Bit C/C++ TALPDFBarCode Type Structure
(2 dimensional PDF417 bar code)

The following is a 16 Bit C/C++ declaration for the TALPDFBarCode data type with comments
indicating the purpose of each individual data member. Refer to the 16 Bit TALPDFBarCode Type
Structure Elements for a more detailed description of each data member.

typedef struct tagTALPDFBarCode
{
 int messageLength; // Length of message to be encoded
 char messageBuffer[2712]; // Message buffer
 int commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 int PDFModuleWidth ; // PDF Module Width
 int BarWidthReduction; // Bar Width Reduction (0 to +-99%)
 int PDFModuleHeight; // PDF Module Height
 float PDFAspect; // PDF Symbol Aspect Ratio
 int PDFSecurityLevel; // PDF417 Security Level (0-8 or 9 for automatic)
 int PDFCompactionMode; // PDF Data Compaction Method
 int PDFPctOverhead; // Percent of Error Correction Overhead
 // (when "auto" Security level option is selected)
 int PDFMaxRows; // Maximum number of rows in the PDF symbol
 int PDFMaxCols; // Maximum number of columns in PDF symbol
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 int fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 int orientation; // Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 int horizontalDPI; // Printer DPI values - used when AdjustToPrinterDPI
 int verticleDPI; // flag is set in Preferences (see notes below)
 int outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[260]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALBarCode;

 15

16 Bit TALPDFBarCode Type Structure Elements
(for 2 dimensional PDF417 bar codes)
Parameter Data Type Bytes Purpose Will Default?

MessageLength Integer 2 Specifies the length of the message
to be encoded

No - Error is returned if length is
negative, zero or >2712

MessageBuffer Character 2712 Contains the message to be encoded No
CommentLength Integer 2 Specifies the length of the comment

text
No - Error is returned if length is
negative, zero or >100

CommentBuffer Character 100 Contains the comment string No
PDFModuleWidth Integer 2 Width of the smallest PDF417

module in units of .01 mm
Yes, default is 25 (10 mils)

BarWidthReduction Integer 2 Percentage of bar width reduction (or
gain) Range is 99% to -99% (gain)

Yes , default is 0 (i.e. no bar
width reduction or gain)

PDFModuleHeight Integer 2 Height of smallest PDF417 codeword
module in units of .01 mm

Yes, default is 76 (30 mils)

PDFAspect Single 8 Symbol aspect ratio (desired overall
height to width ratio)

Yes, .5 - overall symbol width
will be twice the height

PDFSecurityLevel Integer 2 PDF417 security level (0-9)
9=automatic based on % of symbol
area to use for error correction

No

PDFCompactionMode Integer 2 PDF417 data compaction mode (0-3) Yes- automatic (9)
PCTOverhead Integer 2 Percentage of symbol area to use for

error correction when
PDFSecurityLevel option is set to 9
(automatic)

Yes, 11%
Only used if PDFSecurityLevel
is set to 9 (automatic)

PDFMaxRows Integer 2 Maximum number of codeword rows
to allow

Yes, default is 90

PDFMaxCols Integer 2 Maximum number of codeword
columns to allow

Yes, default is 30

FGColor Long 4 Specifies the foreground RGB color
for all bars

Yes, default is Black (&H0)

BGColor Long 4 Specifies the background RGB color.
If set to &HFFFFFFFF then
background is transparent

Yes, default is White
(&HFFFFFF)
 if FGColor=0 and BGColor=0

FontName Character
(ASCIIZ)

32 Name of the font for all human
readable text

Yes, default is the System font

FontSize Integer 2 Point size for text font Yes, default is 10 points
TextColor Long 4 RGB color for human readable text No
Orientation Integer 2 Specifies rotation in 90 degree

increments (0 - 3)
Yes, default is 0 or no rotation

Preferences Long 4 See description of preferences below Yes, default is 0
HorizontalDPI Integer 2 Horizontal dots per inch of output

device. see notes below
No - used only if option
AdjustToPrinterDPI is enabled

VerticalDPI Integer 2 Vertical dots per inch of output
device. see notes below

No - used only if option
AdjustToPrinterDPI is enabled

OutputOption Integer 2 Specifies how to output the bar code.
See notes below

No

OutputFilename Character
(ASCIIZ)

68 Output file name. required if
outputting to a disk file

No - not required unless
outputting to a disk file

OutputhDC Integer

2 Device context handle for output
device. required if outputting to a
device context

No - not required unless
outputting to a device context

XPosInInches Single 4 X coordinate for output position. used
when outputting to a device context

Yes, default is 0

YPosInInches Single 4 Y coordinate for output position. used
when outputting to a device context

Yes, default is 0

Reserved Long 4 Reserved for future use N/A

 16

32 Bit DLL Declarations and Type Structures

The 32 bit versions of the TAL Bar Code DLLs use slightly different data structures for the
TALBarCode, TALPDFBarCode and the MetaFilePict structures. Essentially, all Integer parameters
(2 byte) found in the 16 bit DLLs should be declared as Long Integers (4 byte) in the 32 bit DLLs.
Also, to provide support for long file names, the OutputFilename parameter in the 32 bit DLLs should
be declared as a String * 260 instead of a String * 68.

Sample Visual Basic (32 bit) DLL Function Declaration Statements:

Declare Function TALCode39 Lib "TALC3932.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALCodaBar Lib "TALCBR32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function Lib TALCode93 "TALC9332.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALCode128 Lib "TAL12832.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALI2of5 Lib "TALITF32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALPostNet Lib "TALZIP32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALUPC Lib "TALUPC32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALEAN Lib "TALEAN32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALPLESSEY Lib "TALMSI32.dll" (BC As TALBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALPDFCode Lib "TALPDF32.dll" (BC As TALPDFBarCode, MetaPict As MetaFilePict) As Long
Declare Function TALAZTEC Lib "TALAZT32.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Long
Declare Function TALDMX Lib "TALDM32.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Long
Declare Function TALMAXI Lib "TALMAX32.DLL" (BC As TALMaxiCode, MetaPict As MetaFilePict) As Long

Sample C/C++ (32 bit) DLL Function Declaration Statements:

extern "C"
{
int WINAPI TALCode39 (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALCodaBar (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALCode93 (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALCode128 (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALI2of5 (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALPostNet (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALUPC (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALEAN (TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALPLESSEY(TALBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALPDFCode (TALPDFBarCode * barcode, METAFILEPICT * metapict);
int WINAPI TALAZTEC (TALMatrixCode * barcode, METAFILEPICT * metapict);
int WINAPI TALDMX (TALMatrixCode * barcode, METAFILEPICT * metapict);
int WINAPI TALMAXI (TALMaxiCode * barcode, METAFILEPICT * metapict);
};

 17

32 Bit Visual Basic TALBarCode Type Structure Declaration
(for all normal 1 dimensional bar codes)

The following is a Visual Basic type declaration for the TALBarCode data type with comments
indicating the purpose of each individual data member. Refer to the 32 Bit TALBarCode Type
Structure Elements for a more detailed description of each data member.

Type TALBarCode
 MessageLength As Long ' Length of message to be encoded
 MessageBuffer As String * 100 ' Message buffer
 CommentLength As Long ' Length of comment
 CommentBuffer As String * 100 ' Comment buffer
 NarrowBarWidth As Long ' Narrow Bar Width in units of .01 mm
 BarWidthReduction As Long ' Percent of NarrowBarWidth (see notes for details)
 BarCodeHeight As Long ' Height of Bars in units of .01 mm
 FGColor As Long ' Foreground RGB color
 BGColor As Long ' Background RGB color
 NarrowToWideRatio As Long ' Integer 20-30 (20=2.0 to 30=3.0) (see notes for details)
 FontName As String * 32 ' Font name for human readable text and comment
 FontSize As Long ' Font size in points
 TextColor As Long ' Text color - RGB color value
 Orientation As Long ' Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 Preferences As Long ' Bit values as described below
 HorizontalDPI As Long ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Long ' flag is set in Preferences (see notes for details)
 OutputOption As Long ' 0=Clipboard, 1=SaveToFile, 2=MetaFilePict, 3=hDC

' (see notes for details)
 OutputFilename As String * 260 ' ASCIIZ filename when saving to disk (null terminated)
 OutputhDC As Long ' Output device context when outputting to hDC
 XPosInInches As Single ' X position when outputting to hDC (see notes for details)
 YPosInInches As Single ' Y position when outputting to hDC (see notes for details)
 Reserved As Long ' Reserved for future use
End Type

32 Bit Visual Basic MetaFilePict Type Structure Declaration

The MetaFilePict data structure is a standard Windows API data structure. The following is a sample
Visual Basic declaration for the MetaFilePict data type. Note for 32 bit Windows, all members of the
MetaFilePict structure should be declared as "Long" instead of "Integer".

Type MetaFilePict ' 32 bit MetaFilePict Type Structure
 mm As Long ' MetaFile map mode - this will always be MM_ANISOTROPIC (8)
 xExt As Long ' Width of the MetaFile - TAL DLLs use units of .01 mm
 yExt As Long ' Height of the MetaFile
 hMf As Long ' Handle to the actual MetaFile in memory
End Type

 18

32 Bit C/C++ TALBarCode Type Structure Declaration
(for all normal 1 dimensional bar codes)

The following is a 32 Bit C/C++ declaration for the TALBarCode data type with comments indicating
the purpose of each individual data member. Refer to the 32 Bit TALBarCode Type Structure
Elements for a more detailed description of each data member.

typedef struct tagTALBarCode
{
 long messageLength; // Length of message to be encoded
 char messageBuffer[100]; // Message buffer
 long commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 long narrowBarWidth; // Narrow Bar Width in units of .01 mm
 long barWidthReduction; // Percent of narrowBarWidth
 long barCodeHeight; // Height of Bars in units of .01 mm
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 long narrowToWideRatio; // 20-30 (20=2.0 to 30=3.0) (see notes for details)
 char fontName[32]; // Font name for human readable text
 long fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 long orientation; // Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 long horizontalDPI; // Printer DPI values - used when AdjustToPrinterDPI
 long verticleDPI; // flag is set in Preferences (see notes below)
 long outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[260]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALBarCode;

 19

32 Bit TALBarCode Type Structure Elements
(for all normal 1 dimensional bar codes)
Parameter Data Type Bytes Purpose Will Default?
MessageLength Long 4 Specifies the length of the

message to be encoded
No - Error is returned if length
is zero or >100

MessageBuffer Character 100 Contains the message to be
encoded

No

CommentLength Long 4 Specifies the length of the
comment text

No - Error is returned if length
is zero or >100

CommentBuffer Character 100 Contains the comment string No
NarrowBarWidth Long 4 Width of the narrow bars in

units of .01 mm
Yes, default is 33 (13 mils)

BarWidthReduction Long 4 Percentage of bar width
reduction (or gain) Allowable
range is 99% to -99% (gain)

Yes , default is 0 (i.e. no bar
width reduction or gain)

BarCodeHeight Long 4 Height of the bars in units of
.01 mm (not including
message text or comment)

Yes, default is 2540 (1 inch)

FGColor Long 4 Specifies the foreground RGB
color for all bars

Yes, default is Black (&H0F)

BGColor Long 4 Specifies the background RGB
color. If set to &HFFFFFFFF
then background is transparent

Yes, default is White
(&HFFFFFF) if FGColor=0
and BGColor = 0

NarrowToWideRatio Long 4 Specifies the narrow to wide
bar width ratio - can range from
20 to 30 representing 2.0 to 3.0

Yes, default is 25
representing a narrow to wide
ratio of 2.5

FontName Character
(ASCIIZ)

32 Name of the font for all human
readable text

Yes, default is the System
font

FontSize Long 4 Point size for text font Yes, default is 10 points
TextColor Long 4 RGB color for human readable

text
No

Orientation Long 4 Specifies rotation in 90 degree
increments (0 - 3)

Yes, default is 0 or no rotation

Preferences Long 4 See description of preferences
below

Yes, default is 0

HorizontalDPI Long 4 Horizontal dots per inch for
output device. see notes
below

No - used only if option
AdjustToPrinterDPI is
enabled

VerticalDPI Long 4 Vertical dots per inch for output
device. see notes below

No - used only if option
AdjustToPrinterDPI is
enabled

OutputOption Long 4 Specifies how to output the bar
code. see notes below

No

OutputFilename Character
(ASCIIZ)

260 Output file name. required if
outputting to a disk file

No - not required unless
outputting to a disk file

OutputhDC Long 4 Device context handle for
output device. required if
outputting to a device context

No - not required unless
outputting to a device context

XPosInInches Single 4 X coordinate for output
position. used when outputting
to a device context

Yes, default is 0

YPosInInches Single 4 Y coordinate for output
position. used when outputting
to a device context

Yes, default is 0

Reserved Long 4 Reserved for future use N/A

 20

32 Bit Visual Basic TALPDFBarCode Type Structure Declaration

The following is a 32 Bit C/C++ declaration for the TALPDFBarCode data type with comments
indicating the purpose of each individual data member. Refer to the 32 Bit TALBarCode Type
Structure Elements for a more detailed description of each data member.

Type TALPDFBarCode
 MessageLength As Long ' Length of message to be encoded
 MessageBuffer As String * 2712 ' Message buffer
 CommentLength As Long ' Length of comment
 CommentBuffer As String * 100 ' Comment buffer
 PDFModuleWidth As Long ' PDF Module Width
 BarWidthReduction As Long ' Bar Width Reduction (0 to +-99%)
 PDFModuleHeight As Long ' PDF Module Height
 PDFAspect As Single ' PDF Symbol Aspect Ratio
 PDFSecurityLevel As Long ' PDF417 Security Level (0-8 or 9 for automatic)
 PDFCompactionMode As Long ' PDF Data Compaction Method
 PDFPctOverhead As Long ' Percent of Error Correction Overhead
 ' (used when automatic Security level option is selected)
 PDFMaxRows As Long ' Maximum number of rows in the PDF symbol
 PDFMaxCols As Long ' Maximum number of columns in the PDF symbol
 FGColor As Long ' Foreground RGB color
 BGColor As Long ' Background RGB color
 FontName As String * 32 ' Font name for comment text
 FontSize As Long ' Font size
 TextColor As Long ' Text color (RGB value)
 Orientation As Long ' Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 Preferences As Long ' Bit values described below
 HorizontalDPI As Long ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Long ' flag is enabled in preferences
 OutputOption As Long ' 0=Clipboard, 1=SaveToFile, 2=MetaFilePict, 3=hDC
 OutputFilename As String * 260 ' ASCIIZ filename (null terminated)
 OutputhDC As Long ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position (when outputting to hDC)
 YPosInInches As Single ' Y page position (when outputting to hDC)
 Reserved As Long ' Reserved for future use
End Type

 21

32 Bit C/C++ TALPDFBarCode Type Structure Declaration
(2 dimensional bar code)

The following is a 32 Bit C/C++ declaration for the TALPDFBarCode data type with comments
indicating the purpose of each individual data member. Refer to the 32 Bit TALBarCode Type
Structure Elements for a more detailed description of each data member.

typedef struct tagTALPDFBarCode
{
 long messageLength; // Length of message to be encoded
 char messageBuffer[2712]; // Message buffer
 long commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 long PDFModuleWidth ; // PDF Module Width
 long BarWidthReduction; // Bar Width Reduction (0 to +-99%)
 long PDFMod uleHeight; // PDF Module Height
 float PDFAspect; // PDF Symbol Aspect Ratio
 long PDFSecurityLevel; // PDF417 Security Level (0-8 or 9 for automatic)
 long PDFCompactionMode; // PDF Data Compaction Method
 long PDFPctOverhead; // Percent of Error Correction Overhead
 // (when "auto" Security level option is selected)
 long PDFMaxRows; // maximum number of rows in the PDF symbol
 long PDFMaxCols; // Maximum number of columns in PDF symbol
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 long fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 long orientation; // Rotation 0 - 3 or 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 long horizontalDPI; // Printer DPI values - used when AdjustToPrinterDPI
 long verticleDPI; // flag is set in Preferences
 long outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[260]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // reserved for future use
}
TALBarCode;

 22

32 Bit TALPDFBarCode Type Structure Elements
(for 2 dimensional PDF417 bar codes)
Parameter Data Type Bytes Purpose Will Default?

MessageLength Long 4 Specifies the length of the message to
be encoded

No - Error is returned if length
is negative, zero or >2712

MessageBuffer Character 2712 Contains the message to be encoded No
CommentLength Long 4 Specifies the length of the comment

text
No - Error is returned if length
is negative, zero or >100

CommentBuffer Character 100 Contains the comment string No
PDFModuleWidth Long 4 Width of the smallest PDF417 module

in units of .01 mm
Yes, default is 25 (10 mils)

BarWidthReduction Long 4 Percentage of bar width reduction (or
gain) Range is 99% to -99% (gain)

Yes , default is 0 (i.e. no bar
width reduction or gain)

PDFModuleHeight Long 4 Height of smallest PDF417 codeword
module in units of .01 mm

Yes, default is 76 (30 mils)

PDFAspect Single 4 Symbol aspect ratio (desired overall
height to width ratio)

Yes, .5 - overall symbol width
will be twice the height

PDFSecurityLevel Long 4 PDF417 security level (0-9)
9=automatic based on % of symbol
area to use for error correction

No

PDFCompactionMode Long 4 PDF417 data compaction mode (0-3) Yes- automatic (9)
PCTOverhead Long 4 Percentage of symbol area to use for

error correction when
PDFSecurityLevel option is set to 9
(automatic)

Yes, 11%
Only used if PDFSecurityLevel
is set to 9 (automatic)

PDFMaxRows Long 4 Maximum number of codeword rows to
allow

Yes, default is 90

PDFMaxCols Long 4 Maximum number of codeword
columns to allow

Yes, default is 30

FGColor Long 4 Specifies the foreground RGB color for
all bars

Yes, default is Black (&H0)

BGColor Long 4 Specifies the background RGB color.
If set to &HFFFFFFFF then
background is transparent

Yes, default is White
(&HFFFFFF)
 if FGColor=0 and BGColor=0

FontName Character
(ASCIIZ)

32 Name of the font for all human
readable text

Yes, default is the System font

FontSize Long 4 Point size for text font Yes, default is 10 points
TextColor Long 4 RGB color for human readable text No
Orientation Long 4 Specifies rotation in 90 degree

increments (0 - 3)
Yes, default is 0 or no rotation

Preferences Long 4 See description of preferences below Yes, default is 0
HorizontalDPI Long 4 Horizontal dots per inch of output

device. see notes below
No - used only if option
AdjustToPrinterDPI is enabled

VerticalDPI Long 4 Vertical dots per inch of output device.
See notes below

No - used only if option
AdjustToPrinterDPI is enabled

OutputOption Long 4 Specifies how to output the bar code.
See notes below

No

OutputFilename Character
(ASCIIZ)

260 Output file name. required if outputting
to a disk file

No - not required unless
outputting to a disk file

OutputhDC Long 4 Device context handle for output
device. required if outputting to a
device context

No - not required unless
outputting to a device context

XPosInInches Single 4 X coordinate for output position. used
when outputting to a device context

Yes, default is 0

YPosInInches Single 4 Y coordinate for output position. used
when outputting to a device context

Yes, default is 0

Reserved Long 4 Reserved for future use N/A

 23

TALBarCode Data Type Member Descriptions and Notes

MessageLength
The MessageLength parameter specifies the length of message to be encoded. The allowable range
for this parameter is 1 to 100 for all 1 dimensional bar codes and 1 to 2712 for PDF417. The actual
message will be passed in the MessageBuffer parameter. Normally strings are passed to DLLs as
ASCIIZ or "Null Terminated" strings where an ASCII zero is used to indicate the end of the string.
The problem with using this technique is that some bar code symbologies like Code 39 (Full ASCII
version), Code 128 and PDF417 allow you to encode ASCII zeros in a bar code. If we were to use
ASCIIZ strings and a particular bar code message were to contain an ASCII zero character,
Windows would truncate the message at the ASCII zero.

MessageBuffer
Contains the message that you want encoded. Note: Different symbologies allow different sets of
characters to be encoded. For example UPC, EAN, PostNET and Interleaved 2 of 5 can only encode
numeric digits (0-9) and CodaBar can only encode numeric digits and the alpha characters A,B,C
and D. If you pass a message that contains illegal characters for a particular symbology, the DLL
call will fail and an "Invalid Message" error code will be returned.
Note: When specifying UPC A, UPC E, EAN 8, EAN 13 and BookLan bar code messages, to include
a 2 or 5 digit supplemental message, append the 2 or 5 digit supplemental message to the main
message with a comma between them. For additional information on how to specify messages refer
to the Bar Code Symbology Descriptions and Rules for the particular bar code symbology that you
are using.

CommentLength
Specifies the length of an optional comment that you want to appear either above or below the bar
code. The allowable range is 0 to 100. (Zero means that you do not want a comment in the bar code.
The position of the comment is specified using a flag in the "Preferences" variable. (See the notes
for the Preferences Options and Constants: for additional information.)

CommentBuffer
Contains the comment message. Comments can contain any ASCII character.

NarrowBarWidth
The NarrowBarWidth (expressed in integer units of .01 mm) specifies the width of the narrowest bar
in the bar code. All other bar and space width dimensions are based on this width (referred to as the
nominal X dimension). This parameter as well as the number of characters to encode, effectively
determines the total width of a bar code symbol. The best choice for this dimension depends partly
on the resolution of your bar code reading equipment and also on the resolution of the printer being
used to produce the bar code.
As a general rule the Narrow Bar Width should fall in a range between 10 to 30 mils (25 to 76 in
units of .01 mm) and should never be less than 7.5 mils. 13 mils (or .33 mm) is the most commonly
recommended value for most bar code readers). For UPC and EAN bar codes, the smallest
allowable Narrow bar width is 10.4 mils (.26 mm).
The allowable range of values for NarrowBarWidth in the TAL Bar Code DLLs is 0 to 500. If you
pass the value zero, the default value of 33 (13 mils) will be used.

 24

BarWidthReduction
The BarWidthReduction parameter allows you to set a Reduction or Gain factor ranging from 99 (%
reduction) to -99 (% gain). Specifying a non-zero value for the BarWidthReduction parameter causes
the DLL to reduce or enlarge the width of all solid bars in a bar code. Bar Width Reduction is often
necessary to compensate for ink spread when generating bar codes that will be used in wet ink
printing processes. The percentage that you specify is based on the narrow bar width that you
choose for your bar codes. For example if you specify a BarWidthReduction value of 25 and your
narrow bar width is set at 10 mils, the width of all bars in your bar codes will be reduced by 2.5 mils
(25% of 10 mils = 2.5 mils). Bar width gain is typically used when printing on glass or other surfaces
that cause ink to bead up or shrink as it dries. To specify bar width gain instead of reduction, use a
negative percentage value. An error is returned if you specify a BarWidthReduction value greater
than 99 or less than -99.

BarCodeHeight
Specifies the height of the bars in units of .01 mm. The allowable range for this parameter is 100 to
20000 or zero. If you specify zero as the BarCodeHeight, the default value of 2540 (1 inch) will be
used.

FGColor & BGColor
Specifies the Foreground and Background RGB colors for your bar codes. If both the FGColor and
the BGColor parameters are set to zero then the default values of black bars on a white background
will be used. The allowable range of color values are 0 representing black to 16777215 (hex
&HFFFFFF) representing white. If you specify &HFFFFFFFF as the background color, then the
background will be transparent.

Note: It is entirely possible to choose color combinations that render a bar code symbol unreadable.
Although two colors may appear to the human eye to have a high of contrast between them, a bar
code reader may not be able to determine any difference at all between the two colors. Solid black
bars on a solid white background always produces the best results. If you must use colors other than
black on white, a good rule of thumb is to select solid foreground colors with a luminescence value
no greater than 60 and select solid background colors with a luminescence value no less than 180.
See Also: How To Produce Readable Bar Codes

NarrowToWideRatio
The symbologies Code 39, Interleaved 2 of 5 and CodaBar consist of bars and spaces with only two
element widths, Narrow and Wide Elements where the width of the wide elements is a fixed multiple
of the width of the narrow elements. The specifications for these symbologies allow you to choose a
Narrow to Wide Element Ratio ranging from 2.0 to 3.0.

The TAL Bar Code DLLs require that you pass the NarrowToWideRatio parameter as an integer ten
times the actual desired value. (i.e. ranging from 20 to 30 representing 2.0 to 3.0).
If you specify zero as the NarrowToWideRatio, the default of 25 (representing 2.5) will be used. This
parameter is valid only for Code 39, Interleaved 2 of 5 and CodaBar. All other symbologies will
ignore this parameter. The rules for these symbologies specify that when the Narrow Bar Width is
less than 20 mils, the Narrow To Wide element ratio must be 2.2 or greater. The default
NarrowToWideRatio of 2.5 should be acceptable for most applications.

 25

Note: Higher quality readers may be able to read bar codes with a narrow to wide ratio less than 2.2
no matter what the narrow element width is. Lower quality readers often need a ratio of at least 2.5.
Because of the variability between readers, you should always test different ratio values and select
the value that produces bar codes with the best "first pass" read rate.

FontName
The FontName parameter allows you to choose the font for the human readable text in your bar
codes. If you do not specify a font name, the DLL will use the default "System" font.
Different fonts behave differently thus some fonts may appear different on screen than when printed.
True Type fonts are the most WYSIWYG and they also align better when rotated.

Note: Most bar code symbology specifications recommend the font OCR-B (Optical Character
Recognition revision B). The choice of font is not critical however it is a good idea to choose fonts
that are close to the recommended specification. The System font and the font MS Sans Serif are
both very close to OCR-B as is the True Type Font Arial.

FontSize
Specifies the font size in points for all human readable text. The allowable range is zero to 1000
points. If you specify zero then the default font size of 10 points will be used. Note: When the
Automatic Font Scaling option is used in the Preferences variable, it will override any font size
entered for the FontSize parameter. See the Preferences parameter for details.

TextColor
Specifies the foreground RGB color for all human readable text. The allowable range of color values
are 0 representing black to 16777215 (hex &HFFFFFF) representing white.

Orientation
The Orientation parameter allows you to rotate a bar code symbol in increments of 90 degrees from
horizontal. Four choices of orientation are available, 0, 1, 2 and 3. Specifying 0 tells the DLL to
produce normal Horizontal bar codes. Specifying 1 causes the bar code to be rotated 90 degrees
clockwise (Vertical), specifying 2 rotates the bar code 180 degrees (upside down) and specifying 3
rotates the bar code 270 degrees clockwise (vertical). If you specify a value that is outside the
allowable range of 0 to 3, the DLL will perform a logical AND on the number that you supply with the
value 3 and then use the resulting value.

Preferences
The Preferences option allows you to choose specific options available in each bar code symbology
by setting bit values in the Preferences variable. You enable a particular preference option by ORing
the Preferences variable with a particular constant value.
See the Preferences Options and Constants: section of this manual for a complete description of all
available Preferences options and their respective constant values.

 26

HorizontalDPI and VerticleDPI
The HorizontalDPI and VerticleDPI parameters only have meaning when the
Pref_AdjustToPrinterDPI option is set in the Preferences variable. See Preferences Options and
Constants: for details.

OutputOption
The OutputOption variable allows you to select the method that the DLL will use to output your bar
codes. The TAL Bar Code DLLs support four possible output options that are selected by using the
following values:

Option Value Output Action
OutputToClipboard 0 Places the bar code in the Windows clipboard.
OutputToDiskFile 1 Stores the bar code in a disk file as a WMF file.
OutputToMemoryMetaFile 2 Stores the bar code in a memory MetaFile.
OutputTohDC 3 Paints the bar code to a device context.

The OutputToClipboard and OutputToDiskFile options are typically used when the programming
language that you are using does not provide access to device context handles for screen windows.
Visual Basic for Applications (as in MS Word and Access) is one such language (not to be confused
with Microsoft Visual Basic). Because you do not have access to device context handles, you cannot
use the PlayMetaFile Windows API function to render your bar codes on screen. You can however
retrieve graphics from the clipboard or from a disk file in VBA and most other similar languages.
Note: When outputting to a disk file, you have the option of storing the MetaFile as a standard
Windows MetaFile or as an Aldus Placeable MetaFile. The default is to store a standard Windows
MetaFile. To create an Aldus Placeable MetaFile, you use the Pref_MakeAldusMetaFile constant
with the Preferences parameter. Note: All newer versions of Word, Access and most other Microsoft
applications require Aldus Placeable MetaFiles and will not recognize standard MetaFiles.

The OutputTohDC option can be used to have the DLL perform almost all of the work of creating and
also rendering the bar code directly on a device context (hDC). This option is the most powerful
because the DLL does everything for you including create the bar code, render it on a device and
also delete the MetaFile from memory. For simpler applications that require small numbers of bar
codes, this option is probably the best because it requires the least additional code and it cleans up
after itself leaving you little to worry about.

The OutputToMemoryMetaFile option is the most flexible of the four options because it creates the
bar code to a memory based MetaFile and then leaves it in memory so that you can access it as
needed. C/C++ programmers will probably find this method to be the best one to use. The MetaFile
is accessed using a MetaFile handle (hMF) that is passed back to your application in a MetaFilePict
type structure. The MetaFilePict structure contains several parameters including size information
and the handle to the MetaFile (hMF) containing your bar code. The hMF parameter in the
MetaFilePict structure (returned by the DLL call) will be zero for all output options except when
outputting to a memory MetaFile.

 27

Important: When you output to a memory MetaFile, your application is responsible for deleting the
MetaFile when it is no longer needed by calling the Windows API function DeleteMetaFile. If you do
not delete the MetaFile, it will stay in memory after your application exits resulting in a "memory leak"
(this is a big no no in Windows programming).
The OutputToMemoryMetaFile option is the most flexible way to use the bar code DLLs because you
only need to create each bar code once. After a bar code has been created, you can output it to the
screen, the printer or both as necessary without having to create it again.

When the DLL is called to output to either the clipboard, a disk file or directly to a hDC, the DLL will
delete the MetaFile from memory thus saving you the trouble. In these cases the DLL will set the
hMF member of the MetaFilePict returned by the DLL to zero to make sure that you cannot try to
access it.

OutputFileName
The OutputFileName parameter is the name and path for a disk file where you would like your bar
code saved. This parameter is required when you use the "OutputToDiskFile" Output Option. For all
other output options this parameter is ignored. The file name must be passed as a null terminated
string (ASCIIZ). If you pass an illegal file name, the DLL function call will fail and return an "Invalid
Filename" error.

Note: For the 16 bit versions of the TAL Bar Code DLLs you must define OutputFileName as a string
* 68 (this is the longest allowable path name in 16 bit Windows). For the 32 bit DLLs you must define
the OutputhFileName as a string * 260 (this is the longest allowable path name in Windows 95 and
NT, i.e. for "Long File Names").

OutputhDC
The OutputhDC parameter is the device context handle (hDC) for the output device where you would
like your bar code displayed or printed. This parameter is required when you use the "OutputTohDC"
Output Option. For all other output options this parameter is ignored.
Note: For the 16 bit versions of the TAL Bar Code DLLs you must define OutputhDC as an integer (2
bytes). For the 32 bit DLLs you must define the OutputhDC as a Long (4 bytes).

 XPosInInches and YPosInInches
The XPosInInches and YPosInInches variables are used to specify the position on a device context
(printer page or screen window) where you would like your bar code drawn when you use the output
option "OutputTohDC". Since the DLL will be drawing the bar code directly to the device, these
parameters let you specify the coordinates on the page or window (in inches) for the upper left
corner of your bar code. These parameters are only valid when the output option is set to
"OutputTohDC" and are ignored for all other output options.
These parameters are expected as positive values with the upper left corner of the page being
position 0,0. The values passed to the DLL must fall within the height and width of the screen
window or the printer page sizes for the output device. Since these values are passed as single
precision variables and not integers, you can specify fractional coordinate values.

 28

Parameters Specific to the TALPDFBarCode Type Structure

PDFModuleWidth
Specifies the width of the smallest PDF417 code word module in units of .01mm. This parameter is
similar to the NarrowBarWidth parameter for standard 1 dimensional bar code symbologies.

The specification for PDF417 recommends that the Module Width should fall in a range between 10
and 30 mils (.25mm to .76mm). The smallest allowable module width defined in the symbology
specification is 6.56 mils (.17mm). This translates to 2 printer dots when printing to a 300 DPI laser
printer. The best way to determine the ideal Module Width for your application is to actually print out
a sample bar code using several different values and try reading each one with your scanning
equipment. You should choose the value that produces bar codes with the best read rate.

PDFModuleHeight
Specifies the height of the smallest PDF417 code word module in units of .01mm.
The recommended value for the Module Height is approximately three times the value for the
PDFModuleWidth however the symbol specifications allow for module heights as small as 10 mils
(.25mm). This translates to 3 printer dots on a 300 DPI laser printer.

PDFAspect
The PDFAspect determines the overall shape of the PDF417 symbol and is defined as the overall
height to width ratio. Higher values for the Aspect Ratio (greater than 1) produce tall, thin PDF417
bar codes and small values (greater than zero and less than 1) produce short, wide bar codes. A
value of 1 should produce approximately square bar codes. Refer to the Symbology Descriptions
and Rules for PDF417 for a further explanation of PDF aspect ratios.

PDFSecurityLevel
The PDFSecurityLevel parameter allow you to select a PDF417 error correction level from 0 to 8 (or
9 for automatic). Each higher security level up to 8 adds additional overhead to a PDF417 symbol
thereby consuming more symbol real estate. You can have the TALPDF DLL automatically select an
error correction level based on a percentage of total symbol area that you want to devote to error
correction. If you pass the value 9 for the PDFSecurityLevel and also pass a percentage value (from
0 to 99%) in the PDFPctOverhead parameter, the DLL will automatically choose a value that will
limit the amount of error correction overhead to the given percentage of symbol area. This option is
designed so that you do not waste space on redundant error correction. Refer to the Symbology
Descriptions and Rules for PDF417 for a further explanation of PDF error correction capabilities.

 29

PDFPctOverhead
Specifies the percentage of error correction overhead (0 - 99) to be used when the
PDFSecurityLevel parameter is set to 9 (automatic). If you enter zero for this parameter, a default
value of 11% will be used. (See the PDFSecurityLevel parameter above.)

PDFCompactionMode
Specifies the PDF Data Compaction Method to use. There are three primary data compaction
modes available for the PDF417 symbology; Extended Alphanumeric Compaction (EXC) mode,
Binary/ASCII Plus mode and Numeric Compaction mode. When encoding data in a PDF417
symbol it is possible to switch between the data compaction modes therefore the TALPDF DLL has
two additional "Automatic" compaction mode options. Refer to the Symbology Descriptions and
Rules for PDF417 for a further explanation of PDF data compaction modes. To select a particular
method using one of the following values.

Compaction Mode Value Description
Auto (EXC/Bin/Num) 0 Allows full switching between the three standard data

compaction modes (EXC, Binary & Numeric) and
provides the maximum data compression possible.

Auto (EXC/Binary) 1 Similar to Auto (EXC/Bin/Num) except does not allow
switching to Numeric mode in a symbol.

EXC Mode Only 2 Extended Alphanumeric Compaction (EXC)
Binary Mode Only 3 Binary/ASCII Plus Mode
Numeric Mode Only 4 Numeric Compaction (for numeric data only)

PDFMaxRows
Specifies the maximum number of codeword rows in a PDF symbol. The allowable range is 3 to 90.
If you specify a value outside the allowable range then the value 90 will be used (i.e. the maximum
allowable value). Refer to the Symbology Descriptions and Rules for PDF417 for a further
explanation of the structure of a PDF417 bar code.

PDFMaxCols
Specifies the maximum number of codeword columns in a PDF symbol. The allowable range is 1 to
30. If you specify a value outside the allowable range then the value 30 will be used. Refer to the
Symbology Descriptions and Rules for PDF417 for a further explanation of the structure of a
PDF417 bar code.

 30

Preferences Options and Constants:

Note: To use one or more preferences options, perform a logical OR using the desired preferences
constants and pass the result to the DLL in the Preferences variable in the TALBarCode or
TALPDFBarCode data structure.

For example to turn off the human readable text and include quiet zones in a bar code you could use
the following code in Visual Basic:

Const Pref_DoNotDisplayText = 1
Const Pref_QuiteZones = 8
Dim MyBarCode as TALBarCode
MyBarCode.Preferences = Pref_DoNotDisplayText OR Pref_QuiteZones

Pref_DoNotDisplayText = 1
Disables the display of the human readable message text.

Pref_TextOnTop = 2
Instructs the DLL to place the human readable message text above the bar code. Normally the
human readable message text is placed below the bar code symbol.

Pref_CommentOnBottom = 4
Instructs the DLL to place the comment text below the bar code. Normally the comment text is
placed above the bar code symbol.

Pref_QuietZones = 8
Causes the DLL to add blank space at either end of a bar code image. This space, called Quiet
Zones, helps to insure that a bar code reader will be able to correctly determine the true beginning
and end of a bar code symbol. The width of the quiet zones will be 10 times the NarrowBarWidth
parameter for all 1 dimensional symbols and 2 times the PDFModuleWidth value for PDF417 bar
codes. Most bar code symbology specifications require quiet zones therefore it is highly
recommended that you enable this option. Note: UPC, EAN and Booklan bar codes automatically
include quiet zones in the symbol. Selecting this option causes the width of the quiet zones in these
symbols to be twice the normal width.

Pref_BearerBars = 16
Causes the DLL to draw lines surrounding a bar code symbol. The purpose of bearer bars is to
equalize the pressure exerted by a printing plate over the entire surface of the symbol. Bearer bars
also enhance the reading reliability of a bar code by reduction of the probability of misreads or short
scans which may occur when a skewed scanning beam enters or exits the symbol through the top or
bottom edge of the bar code. When the scanner path leaves the symbol either through the top or
bottom, it crosses the bearer bar, thereby resulting in an invalid start/stop code. Only the
symbologies: Code 39, Code 93, Interleaved 2 of 5, CodaBar and Code 128 support bearer bars.
This option is ignored by all other symbologies.

Pref_Code39FullASCII = 32
Causes the TALC39 DLL to use the Full ASCII version of Code 39 instead of the normal Code 39.
See the Symbology Descriptions and Rules for CODE 39 (Normal, Full ASCII and HIBC versions)for
details.

 31

Pref_DisplayStartStopChars = 64
Causes the TALC39 DLL to display the Code 39 start and stop characters as asterisks (*) in the
human readable text portion of a Code 39 bar code. This value is not valid for any other symbology.
See the Symbology Descriptions and Rules for CODE 39 (Normal, Full ASCII and HIBC versions) for
details.

Pref_BookLan = 64
Causes the TALEAN DLL to use the BookLan symbology instead of a normal EAN bar code.
This constant is not valid for any other symbology. See the Symbology Descriptions and Rules for
the EAN-8 / EAN-13, BookLan and EAN Supplementalssymbologies for details.

Pref_EANUCC128 = 64
Causes the TAL128 DLL to use the EAN/UCC 128 symbology instead of a normal Code 128 bar
code. This constant is not valid for any other symbology. See the Symbology Descriptions and
Rules for CODE 128 and EAN/UCC 128 for details.

Pref_Code39HIBC = 384
Causes the TALC39 DLL to use the HIBC version of Code 39 instead of the normal version of Code
39. See the Symbology Descriptions and Rules for CODE 39 (Normal, Full ASCII and HIBC
versions) for details.

Pref_OptionalCheckDigit1 = 128
Pref_OptionalCheckDigit2 = 256
Causes the DLL to calculate and append an optional check digit to a bar code message. Different
symbologies allow different types of optional check digit calculations as listed in the following table.
Note: Some bar code symbologies incorporate a check digit as a standard feature of the symbology.
For example UPC, EAN, Code 93 and Code 128 all require a check digit and therefore it is not an
option. The TAL Bar Code DLLs will always calculate and append all required check digits according
to the specifications of the chosen symbology. The Optional Check digit preferences options allow
you to instruct the DLL to add check digits in addition to the standard check.

Symbology Pref_OptionalCheckDigit1 Pref_OptionalCheckDigit2
Code 39 Modulo 43 Add HIBC Start Character
Extended Code 39 Modulo 43 Add HIBC Start Character
Interleaved 2 of 5 Modulo 10
CodaBar Modulo 16
EAN/UCC 128 Modulo 10

Note: If the optional check digit for EAN/UCC 128 is enabled, the message must consist of numeric
digits only otherwise the DLL function will fail and return an "Invalid Message" error.

Pref_DisplayCheckDigit = 512
Causes optional check digits to be appended to the human readable text in a bar code. Typically any
optional check digits are not included in the human readable portion of a bar code symbol however
there are some applications where you may want to display the check digit. This option is only valid
for symbologies that support an optional check digit.
Note: The optional check digit for EAN/UCC 128 will be displayed with the human readable text
regardless of whether this option is selected or not.

 32

Pref_FontBold = 1024
Causes the font for all human readable text to be displayed in bold.

Pref_FontItalic = 2048
Causes the font for all human readable text to be displayed in italics.

Pref_FontUnderLine = 4096
Causes the font for all human readable text to be displayed underlined.

Pref_FontStrikeOut = 8192
Causes the font for all human readable text to be displayed with a line through the center of each
character.

Pref_AutoFontScaling = 16384
Causes the DLL to automatically scale all text to a font size that is approximately one fifth the height
of the generated bar code symbol. This option overrides any value that you specify for the FontSize
parameter.

Pref_AdjustToPrinterDPI = 32768
This option causes the DLL to adjust the narrow bar width to be as close as possible to an integer
multiple of the size of a single printer dot. Since a printer cannot print a partial dot, if the width of the
bars in a bar code are not an exact multiple of the size of a printer dot, the printer driver will round
the bar widths to get as close to a desired line width as it can. This rounding can distort a bar code
slightly because some bars might be rounded up and some might be rounded down. Selecting this
option causes the DLL to adjust the narrow bar width so that any rounding performed by the printer
driver will be minimized. If you enable this preference option then you will also be required to supply
values for the HorizontalDPI and VerticleDPI parameters to indicate the resolution (in dots per inch)
for the printer that you intend to output to.

Pref_TruncatedPDF = 16
This option causes the TALPDF DLL to create truncated PDF417 symbols. For a complete
dscussion of the truncated version PDF417 symbols, refer to the PDF417 section of the Bar Code
Symbology Descriptions and Rules.

Pref_MakeAldusMetaFile = 65536
This option causes the DLL to save MetaFiles to disk using the "Aldus Placeable MetaFile" format.
This format is a variation of the standard Windows MetaFile that is required by many popular
applications including all Microsoft Office applications (Word, Access and Excel, etc.)
Aldus Placeable MetaFiles are identical to standard Windows MetaFiles except that they have a
special 22 byte header that contains the overall dimensions of the graphic as well as a special code
that identifies the file as an Aldus Placeable MetaFile. This option is ignored except when outputting
bar codes to a disk based MetaFile (i.e. when the OutputOption variable is set to
"OutputToDiskFile").

 33

Bar Code Dimensions

Because of differences in the design of each bar code symbology, there are differences in the way
that the dimensions for each symbology are expressed.

The two main dimensions used to define the size of most common bar codes are the Narrow Bar
Width and the overall Bar Height. The Height is generally less important than the Narrow Bar Width
and you can scale the height to any size that you like. For the sake of readability the height should
not be less than a quarter of an inch or 15% of the total width of the symbol, whichever is greater.
UPC and EAN bar codes have more specific size requirements if they are to be used for product
identification. For details refer to the Bar Code Symbology Descriptions and Rules for UPC and EAN
and UPC and EAN Magnification Factors.

The Narrow Bar Width effectively determines the total width of a bar code symbol. All other bar and
space width dimensions are based on this width (referred to as the nominal X dimension). The best
choice for this dimension depends partly on the resolution of your bar code reading equipment and
also on the resolution of the printer being used to produce the bar code.

As a general rule the Narrow Bar Width should fall in a range between 10 to 30 mils (.25 to .76mm)
and should never be less than 7.5 mils (13 mils (.33mm) is the most commonly recommended value
for most bar code readers) . For UPC and EAN bar codes, the smallest allowable Narrow bar width
is 10.4 mils (.26mm). One way to determine a good Narrow Bar Width is to actually print out a typical
bar code using several different values and try reading each one with your scanning equipment. You
should choose the value that produces bar codes with the highest "first pass" read rate.

 34

Bar Code Basics

Bar code is an automatic identification technology that allows data to be collected rapidly and with
extreme accuracy. Because of this, bar code technology is finding its way into a broad range of
applications in almost every sector of business. Bar codes provide a simple and easy method of
encoding text information that is easily read by inexpensive electronic readers. A bar code consists
of a series of parallel, adjacent bars and spaces. Pre-defined bar and space patterns or symbologies
are used to code character data into a printed symbol. Bar codes can be thought of as a printed
version of the Morse code with narrow bars representing dots, and wide bars representing dashes. A
bar code reading device decodes a bar code by scanning a light source across the bar code and
measuring the intensity of light reflected back to the device. The pattern of reflected light produces
an electronic signal that exactly matches the printed bar code pattern and is easily decoded into the
original data by inexpensive electronic circuits. Due to the design of most bar code symbologies it
does not make any difference if you scan a bar code from right to left or from left to right.

Shown Below is the structure of a typical bar code symbol.

Q
U

IE
T

ZO
N

E

Q
U

IE
T

ZO
N

E

Start StopCheck1 3

The basic structure of a bar code consists of a leading and trailing quiet zone, a start pattern, one or
more data characters, optionally one or two check characters and a stop pattern.

There are a variety of different types of bar code encoding schemes or "symbologies", each of which
were originally developed to fulfill a specific need in a specific industry. Several of these
symbologies have matured into de-facto standards that are used universally today throughout most
industries. The symbologies supported by the TAL Bar Code DLLs are those most commonly used
across all industries. For more information about specific bar code symbologies see: Bar Code
Symbology Descriptions and Rules.

 35

How A Bar Code Reader Works

A bar code reader works by scanning a dot of light across a bar code symbol. As the dot scans
across the bar code, light is reflected back to the bar code reader by the light areas and is absorbed
by the dark areas. The scanner electronically measures the intensity of the light reflected back to
produce a digitized waveform that can be decoded back to the original message similar to the way
morse code dots and dashes are decoded.

Dot Of Light

Digitized Signal

Bar code scanners can be purchased with different resolutions to enable them to read bar codes of
different sizes. The scanner resolution is measured by the size of the dot of light. The dot of light
should be equal to or slightly smaller than the narrowest element width ("X" dimension). If the dot is
wider than the width of the narrowest bar or space, then the dot of light will overlap two or more bars
at a time and there will not be sharp transitions in the digitized waveform produced by circuit that
measures the intensity of the light reflected back to the reader. If the dot is too small, then any spots
or voids in the bars can be misinterpreted as light areas thus making a bar code unreadable.

The factors that make a bar code readable are: an adequate print contrast between the light and
dark bars and having all bar and space dimensions within the tolerances for the symbology. It is also
helpful to have sharp bar edges, few or no spots or voids, a smooth surface and clear margins or
quiet zones at either end of the printed symbol.

 36

How To Produce Readable Bar Codes

Although there are many different types of bar codes, they all share the same requirements in order
to be readable by most commercially available scanning devices. Because a beam of light is used to
read a bar code, it should be clean and free of defects or smudges and there should be a high
contrast between the color of the bars and the color of the spaces. Black bars on a white
background yield the best results. If you intend to use colored bar codes or colored paper, you
should always test the readability of your bar codes before committing to a color scheme.

Another important consideration is that there should always be a small amount of space or Quiet
Zones preceding and following the bar code so that the reading device is able to properly determine
the true start and end of the bar code symbol. A good rule of thumb is to reserve at least a quarter of
an inch or 10 times the width of a single narrow bar (whichever is greater) for blank space at either
end of a bar code. The TAL Bar Code DLLs will automatically include Quiet Zones of ten times the
narrow bar width if the "Pref_QuietZones" option is enabled in the Preferences variable.

When printing bar codes, laser, ink jet and thermal transfer printers produce the best results. Dot
matrix printers produce the poorest quality (but not necessarily unacceptable) bar codes. Dot matrix
printers are especially poor when the bar code dimensions are set to a small size. You should try to
avoid very small or very large bar codes, both narrow bar widths and overall bar code dimensions.
As a precaution you should always test your printed output with whatever bar code reading
equipment you eventually intend to use.

See Also:

Bar Code Symbology Descriptions and Rules
Special Considerations and Incompatibilities

 37

A Word About Graphic File Formats

A bar code is comparable to a printed version of the Morse code. Instead of dots and dashes to
represent characters, bar codes use the widths of bars and spaces. It is extremely important that the
widths of the bars and spaces are printed within tight tolerances if you want your bar codes to be
readable by most commercially available bar code readers. How the bar code is produced including
the type of graphic that is originally used is therefore extremely important. Microsoft Windows
supports two native graphic formats that are commonly used to create bar codes; bitmaps and
MetaFiles. Fonts can also be used to create bar codes however fonts generally produce poor to
unacceptable results. For any serious commercial application, fonts should be avoided at all costs.

Bitmaps (Raster Graphics)

A bitmap is an array of dots or “pixels” where each pixel (picture element) has a value that
represents the color of the pixel. Any graphic made up of rows of dots is called a “Raster” graphic.
Most graphic formats including TIF, GIF, DIB, etc. are also raster graphics. When you create a
bitmap, the width of the bitmap is specified by the number of pixels across a row. The height of the
bitmap is defined by the number of rows. The overall printed dimensions of the bitmap is dependent
on the dot resolution of the device used to print the bitmap. For example if you create a bitmap
graphic that is 300 pixels wide and has 300 rows of pixels and then you print this bitmap on a printer
that has a dot resolution of 300 dots per inch, you will end up with a printed image one inch square.
If you display the same bitmap on a computer screen that has a dot resolution of 100 dots per inch,
you end up with an image that is three inches square. This means that bitmaps are “device
dependent” where the resolution of the rendering device (i.e. printer or screen) must be taken into
consideration when you create the bitmap. If you need to preserve the size of an image from one
device to another, (i.e. screen to printer) you must “stretch” or “shrink” a bitmap to fit the desired
size. The process of stretching and shrinking involves either adding or removing pixels to or from the
original image. As you can imagine resizing a bitmap to fit a desired size when moving from one
output device to another generally causes a severe distortion of the original image. When creating
precise raster graphics (like bar codes) it is extremely important that the image is created with the
same dot resolution of the printer. If you do not know the dot resolution of the printer that will be
used to print the bar code then you cannot fully guarantee that it will be readable by all bar code
readers.

Bitmaps also require large amounts of memory and storage space. For example a bitmap that is 300
pixels wide and 300 lines down (only 1 square inch on a 300 DPI laser printer) and has three bytes
per pixel of color information (standard RGB colors) will require 270,000 bytes of memory or disk
space. For bar codes, this is a huge amount of space for a very simple graphic made up of only a
small number of rectangles and a few text characters.

 38

Vector Graphics and MetaFiles

The absolute best way to create bar codes is to use a vector style graphic. Instead of containing an
actual raster style image (like a bitmap), a vector graphic contains a sequence of drawing
instructions that describe how to render the image. For example it might contain an instruction that
tells the output device to move to a point exactly two inches down and to the right from the upper left
corner of the screen or page and draw solid black rectangle exactly a quarter of an inch wide and
one inch tall.

The Windows MetaFile (WMF) is a “vector” graphic format. The prominent features of the WMF
format is that it is completely device independent, it supports extremely precise dimensions for all
graphic elements (down to .01 mm) and the amount of memory required to store a MetaFile is
extremely small. Best of all, every printer that has a Windows printer driver must support printing
MetaFiles therefore there is never an issue with being able to print a MetaFile. The characteristics of
MetaFiles are ideal for creating bar codes.

As an added bonus, most programming languages and commonly used Windows programs provide
built in support for handling MetaFiles. MetaFiles are built from the natural “graphics language” used
by Windows for creating almost all graphic elements used in every Windows program. Widows also
provides built in clipboard support for the MetaFile format which makes it extremely easy to move
them between applications.

There are currently three popular MetaFile formats; "Standard Windows MetaFiles", "Aldus
Placeable MetaFiles" and a new "Enhanced MetaFile" format. The Standard Windows MetaFile
format is the original type of MetaFile typically used in 16 bit applications. This format is fine for most
applications except that when saving the MetaFile to a disk file there is no explicit image size
information stored in the file. If an application needs to determine the overall dimensions of the
graphic in a MetaFile, it has to scan through all the GDI instructions in the file and manually calculate
the dimensions of the graphic. The Aldus Placeable MetaFile was designed to make it easier for an
application to determine the size of the graphic when reading it from a disk file. Aldus Placeable
MetaFiles are identical to standard Windows MetaFiles except they have a 22 byte header
containing the dimensions of the graphic as well as an ID code that identifies the file as an Aldus
Placeable MetaFile. Most application programs including all newer versions of Microsoft Office will
only support Aldus Placeable MetaFiles and are unable to read standard MetaFiles therefore it is
recommended that you use the Aldus Placeable MetaFile format when saving bar codes to disk.

Type APMHEADER ' Aldus Placeable MetaFile Header Structure
 dwKey As Long ' AMPHeader Key (always: &H9AC6CDD7)
 hmf As Integer ' 0 for disk based MetaFile
 xLeft As Integer ' left coordinate in MetaFile units
 xTop As Integer ' top coordinate in MetaFile units
 xRight As Integer ' right coordinate in MetaFile units
 xBottom As Integer ' bottom coordinate in MetaFile units
 wInch As Integer ' number of MetaFile units per inch
 dwReserved As Long ' dwReserved = 0
 wCheckSum As Integer ' XOR checksum of all words in the header
End Type

 39

About The New Enhanced MetaFile Format

In all 32 bit versions of Windows, Microsoft redesigned the original MetaFile format and came up
with the "Enhanced MetaFile". The Enhanced MetaFile format was designed to provide support for
much more complex graphics. Although the 32 bit versions of Windows still support the original
MetaFile format, Microsoft is recommending that all new 32 bit applications use the Enhanced
MetaFile format.

Unfortunately there are problems with the Enhanced MetaFile functions in Windows that present
difficulties when creating high resolution graphics. Until these issues are resolved in later versions
Windows, the TAL Bar Code DLLs will not support Enhanced MetaFiles directly. If you require
Enhanced MetaFiles in your application, you can use the Windows API function
"SetWinMetaFileBits" to convert a standard Windows MetaFile to an Enhanced MetaFile.

The problem with the Enhanced MetaFile format is that Windows now requires that you supply a
reference device context handle to any function that creates an enhanced MetaFile. Windows uses
the reference device context to obtain resolution information about the original device that the
MetaFile was created for. It then uses this resolution information to convert coordinates for graphic
elements in the MetaFile so that they will be rendered as close as possible to the way they would
appear on the reference device. For example, if you create a bar code as an enhanced MetaFile
using the screen as the reference device, Windows will render the bar code on a printer so that it
looks exactly like the bar code when it is rendered to the screen. Because the screen device has a
much lower resolution than most printers, you will end up with extremely poor quality bar codes.
Even though the coordinates used for all graphic elements in the MetaFile are specified in units of
.01mm, Windows converts all coordinates to values that match the resolution capabilities of the
reference device that was used when the MetaFile was created and not to the capabilities of the
device that you are rendering the MetaFile on (i.e. a printer device).

The idea behind this was to make enhanced MetaFiles more "device independent". Microsoft
assumed that most MetaFiles are created on screen using drawing programs where quite often the
printed output of a drawing does not look exactly like it appears on screen because of resolution
differences between the printer and the screen. Unfortunately Microsoft failed to realize that there
might be other programs that create MetaFiles because of their ability to specify extremely precise
coordinates (as required when creating bar codes). Although you could use the printer device
context as the reference device when the MetaFile is created, not all PCs have a printer attached to
them and also, when creating bar codes, the printer that is used to print a bar code is not always the
same as the printer that is connected to the PC where the bar code was originally created. What
Microsoft should have done was allow you to specify a default reference device context that has a
resolution of 2450 DPI which is the highest resolution possible in any MetaFile. This would cause the
new Enhanced MetaFiles to work exactly like the original Windows MetaFiles thereby allowing the
MetaFile to be rendered to the highest resolution possible for any output device.

Microsoft's website (www.microsoft.com) is an excellent source of information about MetaFiles
including an ample amount of sample source code for handling MetaFiles and converting between
all MetaFile formats. Simply log on and perform a search for the word "MetaFile".

 40

Special Considerations and Incompatibilities

Pasting Bar Codes From The Clipboard Into 32 bit Programs
(In Win 95 and NT using Word 97, Pagemaker 6.x, etc.)

In order to use the TAL Bar Code DLLs with programs like Word for Windows that will not allow
access to device context handles, you will have to set up the DLL call to either place the bar code
into the clipboard or save the bar code to a disk file. In the 16 bit version of Word you will not have
any problems doing this; you will simply call the DLL and then perform an EditPaste to insert the bar
code into a document.

In Windows 95 and Windows NT, Microsoft has added a new MetaFile format called the "Enhanced
MetaFile" or "EMF" format. The new EMF format is supposed to be compatible with the standard
WMF file format however there are some inherent technical problems with the EMF format that make
it slightly incompatible with the standard Windows MetaFile format.

Most 32 bit Windows programs (including Word 97, Access 97 and Pagemaker) support both the
WMF and the EMF file formats however some 32 bit programs (i.e. Word 97, Excel 97 and all 32 bit
versions of Pagemaker) automatically assume that any MetaFile found in the clipboard is an
Enhanced MetaFile. When you paste bar codes from the TAL Bar Code DLLs into these programs,
the bar code will be converted to an Enhanced MetaFile and subsequently will not print correctly. For
these applications you must select "Paste Special" and choose either "Picture" or "MetaFile"
(instead of "Enhanced MetaFile") in the "Paste Special" dialog box as the format for the graphic in
the clipboard. The Visual Basic For Applications (VBA) equivalent command for this operation in
Microsoft Word is:

Selection.PasteSpecial DataType:=wdPasteMetaFilePicture, Placement:=wdInLine

Unfortunately Excel 97 does not support MetaFiles that are not "Enhanced MetaFiles" therefore you
may have difficulties printing bar codes in Excel 97. This appears to be an oversight by Microsoft
because all other Office 97 applications support both MetaFiles and Enhanced MetaFiles.

Note: If you are using the 32 bit versions of the TAL Bar Code DLLs, you can easily convert your bar
codes from the standard Windows MetaFile format to an Enhanced MetaFile format by using the 32
bit Windows API function SetWinMetaFileBits. When you do so, you will need to supply a reference
device context handle to the SetWinMetaFileBits function. You should supply the device context
handle for the printer that you are using when you do this. If you supply the screen device context
handle, you will end up with poor quality bar codes when you print them on your printer.

 41

Printing Bar Codes On A Dot Matrix Printer

Dot matrix printers offer the lowest resolution of all available printers. Although dot matrix printer
manufacturers claim resolutions as high as 360 dots per inch, the real resolution of most is only 60
dots per inch. Higher resolutions are simulated by overlapping consecutive dots. The reason that the
true resolution is only 60 dots per inch is because the width of each dot is approximately 1/60th of an
inch (16 mils). In order to print readable bar codes on a dot matrix printer, the Narrow Bar Width
must never be less than the width of a printer dot because it is impossible for a dot matrix printer to
print a line narrower than the width of a single dot. The larger the value that you choose for the
Narrow Bar Width (within the allowable range for a specific symbology), the more readable your bar
codes will be.

When you set up the Windows printer driver for your dot matrix printer you should select the highest
dot resolution that the printer is capable of. If the driver has a Dithering option, you should also
select "Line Art" or the finest dithering resolution that is supported. Some dot matrix printer drivers
also allow you to set the intensity or darkness of the printing. If your printer driver supports this
feature, you should set the intensity to the darkest level supported.

Finally, you should always test bar codes printed on a dot matrix printer.

See Also: How To Produce Readable Bar Codes.

 42

Bar Code Symbology Descriptions and Rules

CODE 39 (Normal, Full ASCII and HIBC versions)

C O D E 3 9

The Normal CODE 39 is a variable length symbology that can encode the following 44 characters:
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ-. *$/+%. Code 39 is the most popular
symbology in the non retail world and is used extensively in manufacturing, military, and health care
applications. Each Code 39 bar code is framed by a start/stop character represented by an asterisk
(*). The Asterisk is reserved for this purpose and may not be used in the body of a message. The
TAL Bar Code DLL for Code 39 automatically adds the start and stop character to each bar code
therefore you should not include them as part of your bar code message. If you select the Normal
version of CODE 39 and your bar code text contains lower case characters, The DLL will convert
them to upper case. If your bar code text contains invalid characters, the DLL call will fail and you
will be returned an "Invalid Message" error.

Code 39 allows for an optional (modulo 43) check. The health care industry has adopted the use of
this check character for health care applications (HIBC bar codes). To enable the Code 39 check
character feature in the Code 39 DLL, use the Pref_OptionalCheckDigit1 parameter with
Preferences variable. When this option is enabled, the DLL will automatically calculate and append
the proper check character to all Code 39 symbols.

A feature of Code 39 allows for concatenation of two or more bar codes so that you can break long
messages into multiple, shorter, symbols. If the first data character of a Code 39 symbol is a space,
some readers will store the remainder of the symbol in a buffer and not transmit the data. This
operation continues for all successive Code 39 symbols with a leading space, with each message
appended to the previous one. When a message without a leading space is read, it is appended to
the previously scanned data and the entire buffer is transmitted as one long message.

HIBC or "Health Industry Bar Code" is a specification for a standard method of encoding data using
Code 39 in healthcare applications. HIBC requires that the first character in an HIBC bar code be a
plus character (+) and that the symbol use a MOD 43 check digit. To generate HIBC bar codes using
the TALC39 DLL, use the "Pref_Code39HIBC" constant with the Preferences variable in the
TALBarCode data type structure before calling the TALCode39 function. If you use the
Pref_Code39HIBC option then you do not need to add the starting plus sign to your bar code
message and the DLL will also calculate the check digit for you.

 43

The FULL ASCII version of Code 39 is a modification of the NORMAL (standard) version that can
encode the complete 128 ASCII character set (including asterisks). The Full ASCII version is
implemented by using the four characters: $/+%. as shift characters to change the meanings of the
rest of the characters in the Normal Code 39 character set. Because the Full ASCII version uses
shift characters in combination with other standard characters to represent data not in the Normal
Code 39 character set, each non-standard character requires twice the width of a standard character
in a printed symbol. The table below shows the character combinations used to produce the Full
ASCII version of Code 39.

ASCII CODE 39 ASCII CODE 39 ASCII CODE 39 ASCII CODE 39
NUL %U SP SPACE @ %V ` %W
SOH $A ! /A A A a +A
STX $B " /B B B b +B
ETX $C # /C C C c +C
EOT $D $ /D D D d +D
ENQ $E % /E E E e +E
ACK $F & /F F F f +F
BEL $G ' /G G G g +G
BS $H (/H H H h +H
HT $I) /I I I i +I
LF $J * /J J J j +J
VT $K + /K K K k +K
FF $L , /L L L l +L
CR $M - - M M m +M
SO $N . . N N n +N
SI $O / /O O O o +O
DLE $P 0 0 P P p +P
DC1 $Q 1 1 Q Q q +Q
DC2 $R 2 2 R R r +R
DC3 $S 3 3 S S s +S
DC4 $T 4 4 T T t +T
NAK $U 5 5 U U u +U
SYN $V 6 6 V V v +V
ETB $W 7 7 W W w +W
CAN $X 8 8 X X x +X
EM $Y 9 9 Y Y y +Y
SUB $Z : /Z Z Z z +Z
ESC %A ; %F [%K { %P
FS %B < %G / %L : %Q
GS %C = %H] %M } %R
RS %D > %I ̂ %N ~ %S
US %E ? %J _ %O DEL %T,%X,%Y,%Z

Note: Because all of the characters used to implement Full ASCII Code 39 are part of the Normal
Code 39 character set, readers that do not support Full ASCII Code 39 will still read Full ASCII Code
39 symbols. The reader will output shifted characters as if they were normal Code 39 characters. For
example the following string: PROGRAMMING=FUN will be read as:
PROGRAMMING%HFUN by a reader that only supports Normal Code 39. Instead of converting the
Full ASCII encoded characters %H to an equal sign, the reader blindly outputs %H.

 44

UPC-A, UPC-E, and UPC Supplementals

 UPC-A with Supplemental UPC-E

1 2 3 4 5

1 23456 78901 2 0 123456 5

UPC-A is a 12 digit, numeric symbology used in retail applications. UPC-A symbols consist of 11
data digits and one check digit. The first digit is a number system digit that usually represents the
type of product being identified. The following 5 digits are a manufacturers code and the next 5 digits
are used to identify a specific product. UPC numbers are assigned to specific products and
manufacturers by the Uniform Code Council (UCC). To apply for UPC numbers or for more
information, contact the UCC at 8163 Old Yankee Road, Suite J, Dayton, OH 45458 Tel: 937-435-
3870

UPC-E is a smaller, six digit, UPC symbology for number system 0. It is often used for small retail
items like candy and cigarettes. UPC-E is also called "zero suppressed" because UPC-E
compresses a normal 12 digit UPC-A code into a six digit code by "suppressing" the number system
digit, trailing zeros in the manufacturers code and leading zeros in the product identification part of
the bar code. A seventh check digit is encoded into a parity pattern for the six main digits. UPC-E
can thus be uncompressed into a standard UPC-A 12 digit number.

When specifying UPC-A or UPC-E messages, you may pass a message with either 6,7,11 or 12
digits. If you pass a message with 6 or 7 digits the TALUPC DLL will generate a UPC-E symbol. If
you pass 7 digits the 7th digit will be removed. (The DLL will assume that you are entering a
message complete with check digit.) If you pass a message with 11 or 12 digits the TALUPC DLL
will generate a UPC-A symbol. If you pass 12 digits the 12th digit will be removed. (Again the DLL
will assume that you are entering a message with a check digit.) The TALUPC DLL automatically
calculates the check digit for you and appends it to your bar code message text. This insures that
you always have the correct check digit.

Both UPC-A and UPC-E allow for a supplemental two or five digit number to be appended to the
main bar code symbol. The supplemental is simply a small additional bar code that is added onto
the right side of a standard UPC symbol. This supplemental message was designed for use on
publications and periodicals. To include a supplemental message, append it to the main message
with a comma separating it from the main message. If you enter a supplemental message, it must
consist of either two or five numeric digits.

The following table contains sample messages for the different variations of UPC symbols.

Message Symbol Generated
123456 UPC-E
123456,12345 UPC-E with a five digit supplemental.
123456789012 UPC-A
12345678901,12 UPC-A with a two digit supplemental.

 45

EAN-8 / EAN-13, BookLan and EAN Supplementals

 EAN-8 EAN-13 with supplemental (ISBN Version)

 1234 5670

5 2 9 9 5

9 781562 760083

 ISBN 1-56276-008-4

EAN or European Article Numbering system (also called JAN in Japan) is a European version of
UPC. It uses the same size requirements and a similar encoding scheme as UPC codes.
EAN-8 encodes 8 numeric digits consisting of two country code digits, five data digits and one check
digit. EAN-13 is the European version of UPC-A. The difference between EAN-13 and
UPC-A is that EAN-13 encodes a 13th digit into the parity pattern of the left six digits of a UPC-A
symbol. This 13th digit, combined with the 12th digit, usually represent a country code.

EAN bar code numbers are assigned to specific products and manufacturers by an organization
called ICOF located in Brussels, Belgium. Tel: 011-32-2218-7674

When specifying EAN-8 or EAN-13 messages, you may pass a message with either 7,8, 12 or 13
digits. If you pass a message with 7 or 8 digits the TALEAN DLL will generate a EAN-8 symbol. If
you pass 8 digits, the 8th digit will be removed. (The DLL will assume that you are entering a
message complete with check digit.) If you pass a message with 12 or 13 digits the TALEAN DLL
will generate a EAN-13 symbol. If you pass 13 digits, the 13th digit will be removed. (Again the DLL
will assume that you are entering a message with a check digit.) The TALEAN DLL automatically
calculates the check digit for you and appends it to your bar code message text. This insures that
you always have the correct check digit.

Like UPC, EAN-8 and EAN-13 allow for a supplemental two or five digit number to be appended to
the main bar code symbol. The supplemental is simply a small additional bar code that is added
onto the right side of a standard EAN symbol. To include a supplemental message, append it to the
main message with a comma separating it from the main message. If you enter a supplemental
message, it must consist of either two or five numeric digits.

The following table contains sample messages for the different variations of UPC symbols.

Message Symbol Generated
1234567 EAN-8 no supplemental
1234567,12345 EAN-8 with a five digit supplemental.
123456789012 EAN-13 no supplemental
1234567890128 EAN-13 no supplemental
123456789012,12 EAN-13 with a two digit supplemental.

 46

Encoding BookLan With the TALEAN DLL

EAN-13 has been adopted as the standard in the publishing industry for encoding ISBN numbers on
books. An ISBN or BookLan bar code is simply an EAN-13 symbol consisting of the first 9 digits of
an ISBN number preceded by the digits 978 and terminated with a standard EAN check digit. The
supplemental in an ISBN bar code is usually the retail price of the book preceded by the digit 5 or it
can be the number 90000 when no price is specified. For example, if you want to encode the ISBN
number 1-56276-008-4 and the price of the book is $29.95 then you could use 978156276008 as
the main bar code message and 52995 for the supplemental and the TALEAN DLL would generate
the correct BookLan bar code.

The TALEAN DLL has a BookLan option that can be set in the Preferences variable using the
Pref_BookLan constant. The Pref_BookLan option helps simplify the encoding of BookLan bar
codes by allowing you to pass a complete 10 digit ISBN number (with or without dashes) to the DLL
and optionally a price for the supplemental separated from the ISBN number with a comma. This
feature saves you the trouble of having to remove the 10th digit from the ISBN number, insert the
preceding 978 and further process the price supplemental.

The following table contains sample messages for the different variations of BookLan symbols. The
following samples apply only when the "Pref_BookLan" option is set in the Preferences variable.

BookLan Message Message in Generated EAN 13 Symbol (BookLan Bar Code)
1-56276-008-4 97815602763 no supplemental
1562760084,29.95 97815602763 with supplemental 52995
1-56276-008-4,2995 97815602763 with supplemental 52995
1-56276-008-4,395 97815602763 with supplemental 50395
1234567890,90000 9781234567897 with supplemental 90000
1234567890,12 9781234567897 with 2 digit supplemental 12

UPC and EAN Magnification Factors

The specifications for UPC and EAN bar codes require a narrow element width of exactly 13 mils
and a bar height of one inch; however, the specifications for these symbologies allow for a
magnification factor of between 80% and 200%. This translates to an allowable range of narrow
element widths of between 10.4 and 26 mils and bar heights between .8 and 2 inches. The TAL Bar
Code DLLs do not have a parameter for a magnification factor, however you can scale the narrow
bar width and the bar height accordingly by multiplying the NarrowBarWidth and the BarCodeHeight
parameters by the desired magnification factor (.8 to 2).

 47

CODE 93

CODE 93 is a variable length symbology that can encode the complete 128 ASCII character set.
Code 93 was developed as an enhancement to the CODE 39 symbology by providing a slightly
higher character density than CODE 39. CODE 93 also incorporates two check digits as an added
measure of security. Although CODE 93 is considered more robust than CODE 39, it has never
achieved the same popularity as Code 39. CODE 93 bar codes are framed by a special start/stop
character. The TALC93 DLL will automatically add the start and stop characters as well as the check
digits to each Code 93 bar code therefore you should not attempt to include them as part of your bar
code message.

CODABAR

CodaBar is a variable length symbology that allows encoding of the following 20 characters:
0123456789-$:/.+ABCD. CodaBar is commonly used in libraries, blood banks, and the air parcel
business. CodaBar uses the characters A B C and D only as start and stop characters. Thus, the
first and last digits of a CodaBar message must be A B C or D and the body of the message should
not contain these characters. The TALCBR DLL will allow any length of CodaBar message as long
as it contains valid characters and starts and ends with a valid start/stop character. If you use lower
case letters for A B C or D, the DLL will convert them to upper case.

 48

INTERLEAVED 2 OF 5 (ITF)

Interleaved 2 of 5 is a high density variable length numeric only symbology that encodes digit pairs
in an interleaved manner. The odd position digits are encoded in the bars and the even position
digits are encoded in the spaces. Because of this, Interleaved 2 of 5 bar codes must consist of an
even number of digits. Also, because partial scans of I 2 of 5 bar codes have a slight chance of
being decoded as a valid (but shorter) bar code, readers are usually set to read a fixed (even)
number of digits when reading Interleaved 2 of 5 symbols. The number of digits are usually pre-
defined for a particular application and all readers used in the application are programmed to only
accept ITF bar codes of the chosen length. Shorter data can be left padded with zeros to fit the
proper length. The TALITF DLL will only accept numeric digits for Interleaved 2 of 5 bar codes. If an
odd number of digits is entered, the DLL will Left-Pad one zero to the number entered.

Interleaved 2 of 5 optionally allows for a weighted modulo 10 check character for special situations
where data security is important. To enable the Interleaved 2 of 5 check character, use the
Preferences option Pref_OptionalCheckDigit1 in Preferences variable. When this option is
enabled, the DLL will automatically calculate and append the proper check character to all
Interleaved 2 of 5 symbols.

MSI-PLESSEY

1 2 3 4 5 6 7 8 9 0

MSI-PLESSEY is a variable length, numeric only, symbology. The symbology is one of the earliest
bar code symbologies ever developed and is based on a four bit binary number scheme. Each
symbol is framed by a start and a stop pattern and contains a check character that is calculated from
the values of each of the encoded data digits. MSI-Plessey is rarely used in anything other than
grocery store shelf marking applications. In fact most modern bar code readers do not provide
support for reading MSI-Plessey symbols.

 49

CODE 128

Code 128 is a variable length, high density, alphanumeric symbology. Code 128 has 106 different
bar and space patterns and each pattern can have one of three different meanings, depending on
which of three different character sets is employed. Special start characters tell the reader which of
the character sets is initially being used and three special shift codes permit changing character sets
inside a symbol. One character set encodes all upper case characters and ASCII control characters,
another encodes all upper and lower case characters and the third set encodes numeric digit pairs
00 through 99. This third character set effectively doubles the code density when printing numeric
data. Code 128 also employs a check digit for data security. In addition to ASCII characters, Code
128 also allows encoding of four special function codes (FNC1 - FNC4). The meaning of function
code FNC1 and FNC4 were originally left open for application specific purposes. Recently an
agreement was made by the Automatic Identification Manufacturers Assoc. (AIM) and the European
Article Numbering Assoc. (EAN) to reserve FNC1 for use in EAN applications. FNC4 remains
available for use in closed system applications. FNC2 is used to instruct a bar code reader to
concatenate the message in a bar code symbol with the message in the next symbol. FNC3 is used
to instruct a bar code reader to perform a reset. When FNC3 is encoded anywhere in a symbol, any
data also contained in the symbol is discarded. The four function codes can be included in a
message by using the ASCII characters ASCII 128 for FNC1, ASCII 129 for FNC2, ASCII 130 for
FNC3 and ASCII 131 for FNC4.

Note: The TAL128 DLL will automatically select the proper character sets and insert the necessary
start character and shift codes so that the resulting bar code will be as short as possible. The check
digit will also be calculated automatically by the DLL.

EAN/UCC 128

The EAN/UCC 128 symbology is a variation of the original Code 128 symbology designed primarily
for use in product identification applications. The EAN/UCC 128 specification uses the same code
set as Code 128 except that it does not allow function codes FNC2-FNC4 to be used in a symbol
and FNC1 is used as part of the start code in the symbol. Some applications for EAN/UCC 128
require an additional Mod 10 check digit. You can enable this check digit by using the
Pref_OptionalCheckDigit1 constant with the Preferences parameter.

 50

POSTNET

POSTNET (POSTal Numeric Encoding Technique) is a 5, 9 or 11 digit numeric only bar code
symbology used by the US Postal Service to encode ZIP Code information for automatic mail
sorting. The bar code may represent a five digit ZIP Code (32 bars), a nine digit ZIP + 4 code (52
bars) or an eleven digit Delivery Point code (62 bars).

POSTNET is unlike other bar codes because data is encoded in the height of the bars instead of in
the widths of the bars and spaces. Most commercially available bar code readers cannot decode
POSTNET. This symbology was chosen by the Postal Service mainly because it is extremely easy to
print on almost any type of printer. POSTNET is a fixed dimension symbology meaning that the
height, width and spacing of all bars must fit within tight tolerances. The TALZIP DLL will only create
POSTNET bar codes that follow the guidelines published by the Postal Service. The DLL does not
allow direct control over the size of POSTNET bar codes. In other words the NarrowBarWidth,
BarWidthReduction and the BarCodeHeight parameters are ignored. Since POSTNET does not
support any human readable text, quietzones, bearer bars or optional check digits, all parameters in
the TALBarCode type structure relating to these features are also ignored.

The TALZIP DLL will ignore non-numeric data in any POSTNET bar code message. For example, if
you enter "Chicago, IL 60601-3222" for a POSTNET bar code message, the DLL will still create a
correct bar code. This feature allows you to pass an address line from another Windows program to
the DLL without having to parse out the Zip code.

Postal FIM Patterns

FIM or "Facing Identification Mark" patterns are another type of postal bar code used in automated
mail processing by the US Postal Service. FIM patterns are used for automatic facing and canceling
of mail that does not contain a stamp or meter imprint (business reply mail, penalty mail, etc.). They
also provide a means of separating business and courtesy reply mail from other letters. Three FIM
patterns are currently in use. FIM-A is used on courtesy reply mail that has been preprinted with
PostNET bar codes. FIM-B is used on business reply, penalty and franked (government) mail that is
not preprinted with PostNET bar codes. FIM-C is used on business reply, penalty and franked mail
that has been preprinted with PostNET bar codes. FIM patterns are placed in the upper right corner
along the top edge and two inches in from the right edge of letters and cards. For more information
about all postal bar codes contact your local post office.

Since postal FIM patterns are always the same, instead of providing a DLL to create FIM patterns,
the three FIM patterns have been provided with the PostNET DLL in the form of three Aldus
Placeable MetaFiles on the DLL disk. The three files are named FIM-A.WMF, FIM-B.WMF and FIM-
C.WMF.

 51

PDF417

PDF417 is a high density 2 dimensional bar code symbology that essentially consists of a stacked
set of smaller bar codes. The symbology is capable of encoding the entire (255 character) ASCII
character set. PDF stands for "Portable Data File" because it can encode as many as 2710 data
characters in a single bar code. The complete specification for PDF417 provides many encoding
options including data compaction options, error detection and correction options, and variable size
and aspect ratio symbols. The symbology was published by Symbol Technologies, Inc. to fulfill the
need for higher density bar codes. The low level structure of a PDF417 symbol consists of an array
of code words (small bar and space patterns) that are grouped together and stacked on top of each
other to produce the complete printed symbol. An individual code word consists of a bar and space
pattern 17 modules wide. The user may specify the module width, the module height, and the overall
aspect ratio (overall height to width ratio) for the complete symbol. A complete PDF417 symbol
consists of at least 3 rows of up to 30 code words and may contain up to 90 code word rows per
symbol with a maximum of 928 code words per symbol.
Shown below is the basic structure of a typical PDF417 bar code.

Start
Pattern

Left Row
Indicator

Right Row
Indicator

Stop
PatternData Codewords

Row 0
.
.
.
.

Row 6

The code words in a PDF417 symbol are generated using one of three data compaction modes
currently defined in the symbology specifications. This allows more than one character to be
encoded into a single data code word. Because different data compaction algorithms may be used, it
is possible for different printed symbols to be created from the same input data. The symbology also
allows for varying degrees of data security or error correction and detection. Nine different error
correction levels are available with each higher level adding additional overhead to the printed
symbol.

The TALPDF DLL allows complete control over all optional features of PDF417.

 52

PDF417 Bar Code Dimensions

A PDF417 bar code symbol consists of multiple rows of bar code data encoded in units called code
words. Each symbol can contain from 3 to 90 rows and each row consists of a Start/Stop pattern and
from 3 to 32 code words (1 to 30 code words for data and 2 for Right and Left Row Indicators). The
smallest element in a PDF417 symbol is called a module. Each code word consists a unique pattern
of 4 bars and 4 spaces each with a width of up to 6 modules within a total width of 17 modules per
code word. (This is where the 417 comes from in the name PDF417 - 4 bars within 17 modules.)

Because the number of code words in a row and the total number of rows in a symbol are variable
quantities, the three primary dimensions used to define the size of a PDF417 bar code are the
Module Width, the Module Height, and the overall Aspect Ratio. The Module Height and Width
values define the height and width of the smallest element in the PDF417 symbol and the Aspect
Ratio specifies the overall shape of the symbol.

The best choice for the Module Width dimension depends partly on the resolution of your bar code
reading equipment and also on the resolution of the printer being used to produce the bar code. The
specification for PDF417 recommends that the Module Width should fall in a range between 10 and
30 mils. The smallest allowable module width defined in the symbology specification is 6.56 mils.
(This translates to 2 printer dots when printing to a 300 DPI laser printer.) The best way to determine
the ideal Module Width for your application is to actually print out a sample bar code using several
different values and try reading each one with your scanning equipment. Again, you should choose
the value that produces bar codes with the best read rate.

The recommended value for the Module Height is approximately three times the value for the
Module Width however the symbol specifications allow for module heights as small as 10 mils (3
printer dots on a 300 DPI laser printer).

 53

The Aspect Ratio determines the overall shape of the PDF417 symbol and is defined as the overall
height to width ratio. Higher values for the Aspect Ratio (greater than 1) produce tall, thin PDF417
bar codes and small values (greater than zero and less than 1) produce short, wide bar codes. A
value of 1 should produce approximately square bar codes. Because each row of data in a PDF417
symbol contains 2 additional code words of overhead (right and left row indicators) as well as start
and stop patterns, tall and thin bar codes with lots of rows (high aspect ratios) will be larger in total
area and contain more overhead than short wide bar codes (low aspect ratios). On the other hand,
short wide bar codes (low aspect ratios) may be difficult to read due to scanner width limitations.

NOTE: Because of the basic structure of a PDF417 symbol, you will probably not be able to produce
a bar code with the exact Aspect Ratio that you specify. The TAL Bar Code DLL for PDF417 will
automatically generate a bar code with the closest match to the Aspect Ratio that you specify within
the limits of the symbol specification. For any given PDF417 bar code symbol there are only a small
number of possible aspect ratios that are physically possible.

The TAL Bar Code DLL for PDF417 also provides more detailed control over the size and shape of a
PDF417 symbol by allowing you to specify the maximum number of rows and a maximum number of
data code word columns in a symbol. You can also cause the DLL to produce a version of PDF417
called Truncated PDF417 that removes the Right Row Indicator code words and the stop pattern on
the right hand side of the symbol thus reducing the total size of a PDF417 symbol.

 54

PDF417 Data Compaction Modes

At the time of this writing, there are three pre-established data compaction modes for the PDF417
symbology. The three modes are listed below:

1. Extended Alphanumeric Compaction (EXC) mode. This mode supports the encoding of all
printable ASCII characters and can compress approximately 2 characters per code word.

2. Binary/ASCII Plus mode. Binary mode supports encoding of the entire ASCII character set.
Binary mode can compress approximately 1.2 characters per code word.

3. Numeric Compaction mode. Numeric mode can encode only the numeric characters 0 through 9
and can achieve data compression of approx. 3 characters per code word.

One or more modes can be used in a single PDF417 symbol by using special shift and latch code
words to switch between modes within the symbol. The TALPDF DLL gives you the option to select
any of the three standard data compaction modes as well as two Auto modes that automatically
generate the smallest number of code words (and thus the smallest symbol) by intelligently
switching between the three standard modes.

The first of the 2 Auto modes provided by the TALPDF DLL is called Auto (EXC/Binary/Numeric).
This mode allows full switching between the three standard data compaction modes and provides
the maximum data compression possible. The second mode, Auto (EXC/Binary), is similar to the
first except that it does not allow switching to Numeric mode in a symbol. The only reason for this
mode is to provide support for a small number of early PDF417 readers that did not have the
capability to decode Numeric mode encoded data.

PDF417 Error Detection and Correction

One of PDF417's primary features is error detection and correction or data security. Each PDF417
symbol has 2 code words for error detection. (Similar to a check digit in standard bar code symbols.)
The error correction capacity may be selected by the user, based on the needs of a specific
application. Error correction compensates for label defects and misdecodes. There are essentially 2
types of errors that can occur in a bar code symbol, Erasures and Misdecodes. Erasures are
missing or undecodable code words and misdecodes are errors that cause the reader to interpret a
particular code word incorrectly. Nine error correction levels numbered 0 through 8 are available in
the symbol specification. Each higher security level allows for a higher number of erasures and
misdecodes to be recovered from. (Since it requires 2 code words to recover from a misdecode, one
to detect the error and one to correct for it, a given security level can support half the number of
misdecodes that it can undecoded or missing code words.)

 55

Since error correction and detection is encoded into additional code words, each higher security
level adds additional overhead to a printed symbol. Higher security levels reduce the maximum
number of data characters that can be encoded in a symbol and also increase the size of a printed
symbol. (A single PDF417 symbol can contain a maximum of 928 total code words for data and error
correction combined.)

The relationship between security level, error correction capacity and the number of additional code
words or overhead required for a given security level is as follows:

Error Correction Maximum Limit of Allowable Symbol Overhead (Number
Level Erasures + (2 x Misdecodes) of Additional Code words)

 0 0 2
 1 2 4
 2 6 8
 3 14 16
 4 30 32
 5 62 64
 6 126 128
 7 254 256
 8 510 512

Truncated PDF417 Symbols

In an effort to further reduce the size of a PDF417 symbol, the designers of the symbology allowed
for a variation of PDF417 called Truncated PDF417. A truncated PDF417 symbol is almost identical
to a standard PDF417 symbol except that the right row indicator code words and the right hand stop
pattern are omitted and replaced with a narrow bar one module wide.

Truncated PDF417 symbol:

Start
Pattern

Left Row
Indicator Data Codewords

Row 0
.
.
.
.

Row 6

 56

PDF417 Options.

The three main sets of options available are Data Compaction Mode, Security Level and Size
Control Parameters.

The five Data Compaction modes available in The TALPDF DLL are AUTO (EXC/Binary/Numeric),
AUTO (EXC/Binary), EXC, Binary and Numeric. For almost all applications the Data Compaction
option should be left set to AUTO(EXC/Binary/Numeric). This will provide the maximum data
compaction possible for any given bar code message. The other four data compaction options are
provided to allow experimenting with the other compaction modes.

The PDFSecurityLevel options allow you to select a specific PDF417 error correction level from 0 to
8. You can also have the TALPDF DLL automatically select a security level based on a percentage
of total symbol area to be used for error correction. If you pass the value 9 (Auto) for the
PDFSecurityLevel parameter, you can then pass a percentage value in the PDFPctOverhead
variable (from 0% to 99%). The "Auto" PDFSecurityLevel mode is probably the best way to specify a
security level because it guarantees that you will not waste symbol real estate with more error
correction overhead than is necessary for small messages. It also insures that enough error
correction will be generated for larger messages. (A small message only needs a small amount of
error correction capacity while a larger message needs more.)
If you pass the value of zero for the PDFPctOverhead parameter, the default percentage of 11% will
be used.

Three other parameters that control the size of a PDF417 symbol are the PDFMaxRows and
PDFMaxCols parameters and a Preferences option to enable printing of Truncated PDF417
symbols. The default maximum number of data rows and columns are the maximum values
allowable in the PDF417 symbol specification (i.e. 30 rows and 90 Columns) . If you specify smaller
values for these parameters, you are essentially defining an upper limit to the overall height or width
of all generated PDF symbols. For example, suppose you need to generate a PDF symbol that
absolutely must be no wider than two inches and you chose 10 mils for the module width. Because
there are 17 modules in a code word and there are 69 modules of overhead per row, (start/stop
patterns and right/left row indicators) the maximum number of code word columns allowable in a 2
inch wide symbol can be calculated using the formula:

10mils x [(17 x MaxCols) + 69]<=2000 mils (2 inches)

If we solve the equation above we obtain the value of 7 for the Maximum number of code word
columns (MaxCols). Thus, if we set the Maximum Number of Data Columns parameter to 7, the
TALPDF DLL will only produce PDF417 symbols that are less than 2 inches wide.

The remaining size control parameter, Create Truncated PDF417 Symbols, causes the TALPDF
DLL to create the truncated version PDF417 that removes the right row indicator and the right hand
stop pattern from the symbol. When creating Truncated PDF417 symbols, there are only 35
overhead modules per row instead of the normal 69 overhead modules. This option can be selected
by using the Pref_TruncatedPDF constant with the Preferences variable in the TALPDFBarCode
type structure.

 57

Aztec Code

Aztec Code is a high density 2 dimensional matrix style bar code symbology that can encode up to
3750 characters from the entire 256 byte ASCII character set. The symbol is built on a square grid
with a bullseye pattern at its center. Data is encoded in a series of "layers" that circle around the
bullseye pattern. Each additional layer completely surrounds the previous layer thus causing the
symbol to grow in size as more data is encoded yet the symbol remains square. Aztec's primary
features include: a wide range of sizes allowing both small and large messages to be encoded,
orientation independent scanning and a user selectable error correction mechanism.

The smallest element in an Aztec symbol is called a "module" (i.e. a square dot). The module size
and the amount of error correction are the only "dimensions" that can be specified for an Aztec
symbol and both are user selectable. It is recommended that the module size should range between
15 to 30 mils in order to be readable by most of the scanners that are currently available.

The overall size of an Aztec symbol is dependent on the module size, the total amount of encoded
data and also on the level of error correction capacity chosen by the user. The smallest Aztec
symbol is 15 modules square and can encode up to 14 digits with 40% error correction. The largest
symbol is 151 modules square and can encode 3000 characters or 3750 numeric digits with 25%
error correction.

There are three types of Aztec symbols, a "Compact" symbol, a "Full Range" symbol and a "Menu"
symbol. Compact symbols have a smaller bullseye pattern and are limited in their overall size to
having up to four "layers" of data surrounding the bullseye pattern. Full Range symbols have a larger
bullseye pattern and can have up to 32 layers of data surrounding the bullseye. Do not confuse
"Layers" with modules. A layer actually is made up of two stacked modules resembling a domino
with each domino laid out around the bullseye pattern so that the long edge of the domino points
away from the center of the symbol.

Menu symbols are a special type of Aztec bar code that are typically used by scanner manufacturers
to create bar codes that contain commands for enabling and disabling features in a bar code reader.
Menu symbols can be either Compact or Full Range symbols and are only useful if you know the
commands that a particular reader will recognize.

Compact Symbol Full Range Symbol

 58

Data Matrix

Data Matrix is a high density 2 dimensional matrix style bar code symbology that can encode up to
3116 characters from the entire 256 byte ASCII character set. The symbol is built on a square grid
arranged with a finder pattern around the perimeter of the bar code symbol.

There are two types of Data Matrix symbols each using a different error checking and correction
scheme (ECC). The different types of Data Matrix symbols are identified using the terminology
"ECC" followed by a number representing the type of error correction that is used by the encoding
software. ECC 000 to ECC 140 are the original type of Data Matrix symbols and are now considered
obsolete. The newest version of Data Matrix is called ECC 200 and is recommended for all new Data
Matrix applications. The ECC 200 version of Data Matrix uses a much more efficient algorithm for
encoding data in a symbol as well as an advanced error checking and correction scheme. The TAL
Data Matrix bar code DLL fully supports all variations of the Data Matrix symbology however the
author of the original symbology specification (CI Matrix Co.) highly recommends that ECC 000 -
ECC 140 be used only where absolutely necessary.

ECC 000 - ECC 140
Data Matrix symbols designated by the terms ECC 000 to ECC 140 are the original type of Data
Matrix symbol that uses a convolutional error correction scheme. There are actually five levels of
error correction available for this type of Data Matrix symbol with each higher level of error correction
designated as follows.

ECC 000 - Provides no error correction
ECC 050 - Provides error correction for damage of up to 2.8% of the printed symbol.
ECC 080 - Provides error correction for damage of up to 5.5 % of the printed symbol.
ECC 100 - Provides error correction for damage of up to 12.6% of the printed symbol.
ECC 140. - Provides error correction for damage of up to 25% of the printed symbol.

For all five ECC levels ECC 000 - ECC 140 there is also a user selectable option for a "Data Format"
which defines the type of data that may be encoded in a Data Matrix symbol. The available formats
are listed below:

Format ID Allowable Data In The Bar Code Message
1 Numeric digits 0 to 9 and the space character
2 Upper case alpha A-Z and the space character
3 Upper case alphanumeric A-Z, 0-9 and the space character
4 A-Z, 0-9, space, minus, period, comma & forward slash (/)
5 7 bit ASCII - all ASCII characters between ASCII 0 to ASCII 127
6 8 bit ASCII - all ASCII characters between ASCII 0 to ASCII 255

 59

ECC200
ECC 200 is the latest and most advanced version of Data Matrix and is therefore strongly
recommended for use in all new Data Matrix applications. ECC 200 uses a Reed-Solomon error
correction algorithm along with a code set switching mechanism that is much more efficient at
packing data into a symbol than any of the earlier encoding schemes (ECC 000 - ECC 140). ECC
200 is capable of encoding the entire 8 bit ASCII character set in a highly efficient manner and
therefore does not provide for or require any Data Format options. In addition to encoding 8 bit
ASCII data, ECC 200 also allows for a special function code called "FNC1" as well as special
indicators for features like "Structured Append" and "Extended Channel Interpretation".

Structured append is a means for generating multiple bar codes containing a much larger data
message than can be encoded into a single symbol. With structured append, each bar code
contains a portion of a larger data message along with a number that identifies the portion of the
message contained in the symbol. When a bar code reader scans a symbol that is part of a
sequence, it will not transmit the data until all symbols in a sequence have been read. It does not
matter what order the bar codes are read in - the reader will correctly build the complete message.

Extended Channel Interpretation is a mechanism for creating user definable data encoding
schemes. For example, suppose you wanted to replace the standard ASCII character set with a
different character set (a foreigh language character set for example), you could use the Extended
Channel Interpretation feature in ECC 200 to indicate that the message encoded in a symbol
conforms to the new interpretation. Notes: To encode data to conform to specific industry standard
it needs to be authorized by AIM International.

The TAL Data Matrix DLL supports all features of the ECC 200 version of Data Matrix. Because ECC
200 supports the entire 8 bit ASCII character set and therefore cannot use ASCII character values to
represent special features (like FNC1), the DLL provides two methods for interpreting the input data
message. The DLL has an option called "Standard_ASCII " that determines how the input data
message is interpreted. If the "Standard_ASCII " constant is ORed with the Preferences variable,
then all input data to DLL is assumed to not contain any special function codes like FNC1 or
Extended Channel Interpretation codes. For most normal applications this option would normally be
used.

If the "Standard_ASCII" constant is not ORed with the Preferences variable, then the tilde character
(~) can be used in the input message as an indicator that the character(s) following the tilde are to
be interpreted with a special meaning as outlined below. To encode a tilde (~) use the string: ~~ (i.e.
two tilde characters). If no tilde characters or Nuls (ASCII 0) are present in the input message, then
enabling the "Standard_ASCII " option has no effect on the resulting bar code symbol.

 60

Tilde Control Codes
~X (a tilde character followed by any upper case alpha character) is used as a shift character for
inserting control codes (characters with ASCII values 0 to 26) into a bar code message. For
example, ~@ = NUL, ~A = ASCII 1,~G = BEL (ASCII 7), ~M = ASCII 13 (carriage return). If you
need to insert ASCII control codes into a message, take the ASCII value for the control code (1-26)
and find the corresponding letter in the alphabet and preceed it with a tilde. i.e. The ASCII value for
a carriage return character is ASCII 13 and the thirteenth letter of the alphabet is "M" therefore to
insert a carriage return in a bar code message, you would use "~M". Note: You can also pass control
codes directly to the DLL without having to use the ~ before an alpha character. For example you
could use either an ASCII 13 character or the sequence ~M to represent a carriage return.

~1 is used to represent the FNC1 code and is followed by normal data.
To encode data to conform to specific industry standards as authorized by AIM International, a
FNC1 character shall appear in the first or second symbol character position (or fifth or sixth data
position of the first symbol of structured append). FNC1 encoded in any other position is used as a
field separator and shall be transmitted as a GS control character (ASCII value 29).
Notes: To encode data to conform to specific industry standard, it needs to be authorized by AIM
International. Contact AIM International at Tel: 703-391-7621 or email: adc@aimi.org
If the FNC1 code is used in the second character position, the input data before '~1' must be,
between 'A' and 'Z', or between 'a' and 'z' or 2-digits between '01' and '99'.

~2 : is used to represent Structured Append and must be followed by a three 3-digit number
between 1 and 255 representing the symbol sequence as well as a file identifier of six numeric
digits. The file identifier is used to uniquely identify a sequence so that only logically linked
sequences are processed as part of the same sequence. The symbol sequence identifier is a
number between 1 and 255 that indicates the position of the symbol within a sequence of up to 16
symbols. The sequence identifier actually contains two four bit values representing the sequence
number and the total number of symbols in the sequence (i.e. m of n where m is the sequence
number and n is the total number of symbols). The upper four bits of this value represent the
position of the particular symbol as the binary value of (m-1) and the lower order four bits identify the
total number of symbols to be concatenated as the binary value of (17-n). For example, symbol 3 in
a sequence of 7 symbols with file ID: 001015 is represented by ~2042001015. The number 042 is
derrived as follows: 3-1=2 which equals 0010 when represented as a 4 bit binary number. 17-7=10
which equals 1010 when represented as a 4 bit binary number. After concatenating the two 4 bit
binary values we end up with 00101010 which equals 42 in decimal.

~3 : Indicates that a message is to be used for reader programming purposes and is followed by
normal data. This feature is only useful if you know the specific programming commands for your bar
code reader.

~5 and ~6 : indicates that the data will contain an abbreviated format header and trailer followed by
normal data. The ~5 or ~6 must appear as the first two characters in a message and must not be
used in conjunction with structured append. Data Matrix provides a means of abbreviating an
industry specific header and trailer in one symbol character. This feature exists to reduce the
number of characters needed to encode data using certain structured formats. If a ~5 is used as the
first two characters of a message, the header [)> + ASCII 30 + 05 + ASCII 29 will be transmitted by
the reader before the data in the message and the trailer ASCII 30 + ASCII 4 will be transmitted
following the data. Likewise, if a ~6 is used as the first two characters of a message, the header [)>+

 61

ASCII 30 + 06 + ASCII 29 will be transmitted by the reader before the data in the message and the
trailer ASCII 30 + ASCII 4 will be transmitted following the data.

~7NNNNNN is used to indicate Extended Channel NNNNNN where NNNNNN is 6-digit EC value
(000000 - 999999). e.g. Extended Channel 9 is represented by ~7000009

~dNNN creates ASCII decimal value NNN for a codeword (must be 3 digits). Please refer to the
official Data Matrix symbology specification for details on the meanings of all codeword values for
ECC 200. Contact AIM International at Tel: 703-391-7621 or email: adc@aimi.org

 62

Calling the TAL Aztec and Data Matrix bar code DLLs

The TAL bar code DLLs for Aztec and Data Matrix use the same type structure (the TALMatrixCode
structure) for all input parameters. Almost all of the parameters in the TALMatrixCode structure are
the same as the parameters in a standard TALBarCode structure except for a few small differences
and a few additional parameters specific to the matrix type bar code symbologies.

The MessageBuffer parameter is defined as a string 3832 bytes in length instead of 100 bytes.
Instead of a "NarrowBarWidth" parameter, the TALMatrixCode structure has a "ModuleSize"
parameter that defines both the height and width of the square dots that make up a matrix style bar
code. Because all matrix style bar codes use some form of "Error Checking and Correction" (ECC)
mechanism, a parameter called "ECCValue" has been included in the structure definition. This
parameter is used to specify any ECC options supported by a particular symbology.
A "DataFormat" parameter has been included in the structure. This parameter is only used when
generating Data Matrix bar codes.

VB Type declaration for 16 bit TALMatrixCode data type

Type TALMatrixCode
 MessageLength As Integer ' Length of the input data message
 MessageBuffer As String * 3832 ' Buffer for the input data message
 CommentLength As Integer ' Length of the comment
 CommentBuffer As String * 100 ' Buffer for the comment
 ModuleSize As Integer ' Module height / width in units of .01mm
 BarWidthReduction As Integer ' Bar width reduction or gain value ranging from -99% to 99%
 ECCValue As Integer ' Error correction value. See notes for different symbologies.
 DataFormat As Integer ' Data Format value for Data Matrix ECC 000 - ECC 140
 FGColor As Long ' Foreground RGB color value
 BGColor As Long ' Background RGB color value
 MyFontName As String * 32 ' Font name for the comment
 MyFontSize As Integer ' Font size in points
 TextColor As Long ' RGB color for the comment text
 Orientation As Integer ' Symbol orientation - 0 to 3 representing 90° increments
 Preferences As Long ' Bit values as described for each symbology
 HorizontalDPI As Integer ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Integer ' is enabled in preferences
 OutputOption As Integer ' 0=Clipboard, 1=SaveToFile, 2=MetafilePict, 3=hDC
 OutputFilename As String * 68 ' ASCIIZ filename (null terminated)
 OutputhDC As Integer ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position (when outputting to hDC)
 YPosInInches As Single ' Y page position (when outputting to hDC)
 Reserved As Long
End Type

 63

VB Type declaration for 32 bit TALMatrixCode data type

Type TALMatrixCode
 MessageLength As Long ' Length of the input data message
 MessageBuffer As String * 3832 ' Buffer for the input data message
 CommentLength As Long ' Length of the comment
 CommentBuffer As String * 100 ' Buffer for the comment
 ModuleSize As Long ' Module height / width in units of .01mm
 BarWidthReduction As Long ' Bar width reduction or gain value ranging from -99% to 99%
 ECCValue As Long ' Error correction value. See notes below
 DataFormat As Long ' Data Format value for Data Matrix ECC 000 - ECC 140
 FGColor As Long ' Foreground RGB color value
 BGColor As Long ' Background RGB color value
 MyFontName As String * 32 ' Font name for the comment
 MyFontSize As Long ' Font size in points
 TextColor As Long ' RGB color for the comment text
 Orientation As Long ' Symbol orientation - 0 to 3 representing 90° increments
 Preferences As Long ' Bit values as described for each symbology
 HorizontalDPI As Long ' Printer DPI values - used when AdjustToPrinterDPI
 VerticleDPI As Long ' is enabled in preferences
 OutputOption As Long ' 0=Clipboard, 1=SaveToFile, 2=MetafilePict, 3=hDC
 OutputFilename As String * 260 ' ASCIIZ filename (null terminated)
 OutputhDC As Long ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position (when outputting to hDC)
 YPosInInches As Single ' Y page position (when outputting to hDC)
 Reserved As Long
End Type

Sample Visual Basic (16 bit) DLL Function Declaration for Aztec and Data Matrix DLLs:

Declare Function TALAZTEC Lib "TALAZTEC.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Integer
Declare Function TALDMX Lib "TALDM.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Integer

Visual Basic (32 bit) DLL Function Declarations for Aztec and Data Matrix DLLs:

Declare Function TALAZTEC Lib "TALAZT32.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Long
Declare Function TALDMX Lib "TALDM32.DLL" (BC As TALMatrixCode, MetaPict As MetaFilePict) As Long

Important Note:
The Data Matrix TALDM.DLL file requires that a second DLL file named ENCODE16.DLL be
installed on the users system. Likewise, the TALDM32.DLL file requires the file named
ENCODE32.DLL be installed. When you distribute your application that uses either the TALDM.DLL
or TALDM32.DLL file, you must also include the dependent ENCODE16.DLL or the ENCODE32.DLL
file. As with all DLL files, it is recommended that you install the DLLs in either the Windows/System
directory or in the directory where the calling application has been installed.

 64

Sample 16 bit C/C++ DLL Function Declaration for Aztec and Data Matrix DLLs

extern "C"
{
int FAR PASCAL TALAZTEC (TALMatrixCode * barcode, METAFILEPICT * metapict);
int FAR PASCAL TALDMX (TALMatrixCode * barcode, METAFILEPICT * metapict);

TALAZTEC TALAZTEC.DLL Aztec Code
TALDMX TALDM.DLL Data Matrix
};

16 Bit C/C++ TALMatrixCode Type Structure

The following is a 16 Bit C/C++ declaration for the TALMatrixCode data type with comments
indicating the purpose of each individual data member.

typedef struct tag TALMatrixCode
{
 int messageLength; // Length of message to be encoded
 char messageBuffer[3832]; // Message buffer
 int commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 int moduleSize; // Narrow Bar Width in units of .01 mm
 int barWidthReduction; // Percent of narrowBarWidth
 int ECCValue // ECC value. See notes for the different symbologies
 int DataFormat // Data Format for Data Matrix ECC 000 - ECC 140
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 int fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 int orientation; // Rotation 0 - 3 for 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 int horizontalDPI; // Printer DPI values used when AdjustToPrinterDPI
 int verticleDPI; // flag is set in Preferences (see notes below)
 int outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[68]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALMatrixCode;

 65

Sample 32 bit C/C++ DLL Function Declaration for Aztec and Data Matrix DLLs

extern "C"
{
int WINAPI TALAZTEC (TALMatrixCode * barcode, METAFILEPICT * metapict);
int WINAPI TALDMX (TALMatrixCode * barcode, METAFILEPICT * metapict);

TALAZTEC TALAZT32.DLL Aztec Code
TALDMX TALDM32.DLL Data Matrix
};

32 Bit C/C++ TALMatrixCode Type Structure

The following is a 32 Bit C/C++ declaration for the TALMatrixCode data type with comments
indicating the purpose of each individual data member.

typedef struct tag TALMatrixCode
{
 long messageLength; // Length of message to be encoded
 char messageBuffer[3832]; // Message buffer
 long commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 long moduleSize; // module height & width in units of .01 mm
 long barWidthReduction; // Percent of narrowBarWidth
 long ECCValue // ECC value. See notes for the different symbologies
 long DataFormat // Data Format for Data Matrix ECC 000 - ECC 140
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 long fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 long orientation; // Rotation 0 - 3 for 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 long horizontalDPI; // Printer DPI values used when AdjustToPrinterDPI
 long verticleDPI; // flag is set in Preferences (see notes below)
 long outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[260]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALMatrixCode;

 66

Aztec Code Error Correction Values
Aztec Code supports the ability to specify the amount of error checking and correction to be
incorporated into a printed symbol. Several methods can be used based on either a percentage of
symbol area or as the total number of codeword "layers" that a symbol should contain. (A layer in
Aztec is a two module high rectangle surrounding the center finder pattern.) You specify the amount
of error correction to the TALAztec DLL by passing a value in the ECCValue parameter in the
TALMatrixCode data structure.

The values that you can pass for the ECCValue parameter are as follows:

0
Specifying zero causes the DLL to use the default error correction which will consume roughly 23%
of the total symbol area.

1 - 99
The values from 1 to 99 represent the percentage of the total symbol area that you would like to
reserve for error correction. The higher the percentage, the larger your Aztec symbols will be.

101 - 104
If you specify a value between 101 and 104, the TALAztec DLL will generate a compact symbol with
1 to 4 layers (101 means to generate a 1 layer compact symbol, 102 generates a 2 layer compact
symbol, etc.)

201 - 232
If you specify a value between 201 and 232, the TALAztec DLL will generate a Full Range symbol
with 1 to 32 layers.

If you specify values of 101 to 104 or 201 to 232, you are directly specifying the total number of data
layers therefore all of your Aztec symbols will be the same size. If all of the layers in the symbol are
not used for data, any remaining empty layers will be used for error correction. If the message that
you are trying to encode requires more layers than the number of layers that you specify, the DLL
will return an error value of 2 (i.e. Invalid Message Length).

For most normal applications, you should use the default error correction by specifying zero.

If you specify a value outside the allowable range (i.e. 0 - 99, 101 - 104 or 201 - 232), the DLL will
use the default error correction value of zero.

 67

Data Matrix Error Correction and Data Format Values

With Data Matrix bar codes, there are currently six different types of symbol where the difference
between each type is the amount of error checking and correction.
When generating Data Matrix symbols of types ECC 000 to ECC 140 and ECC 200, the ECC
number is passed to the Data Matrix DLL in the parameter ECCValue. For example to specify ECC
200, you would pass the value 200 to the DLL in the parameter "ECCValue".

ECC 000 - Provides no error correction
ECC 050 - Provides error correction for damage of up to 2.8% of the printed symbol.
ECC 080 - Provides error correction for damage of up to 5.5 % of the printed symbol.
ECC 100 - Provides error correction for damage of up to 12.6% of the printed symbol.
ECC 140 - Provides error correction for damage of up to 25% of the printed symbol.
ECC 200 - Uses a Reed Solomon error correction algorithm that will automatically provide a
 varying degree of error correction for damage ranging from a minimum of roughly 20%
 to greater than 60% damage depending on the amount of data encoded.

For the five ECC levels ECC 000 - ECC 140 there is also a user selectable option for a "Data
Format" which defines the type of data that may be encoded in a Data Matrix symbol. This
parameter is passed to the Data Matrix DLL in the parameter "DataFormat"
The available formats are listed below:

Format ID Allowable Data
1 Numeric digits 0 to 9 and the space character
2 Upper case alpha A-Z and the space character
3 Upper case alphanumeric A-Z, 0-9 and the space character
4 A-Z, 0-9, space, minus, period, comma & forward slash (/)
5 7 bit ASCII - all ASCII characters between ASCII 0 to ASCII 127
6 8 bit ASCII - all ASCII characters between ASCII 0 to ASCII 255

 68

Preferences Constants used with the Aztec or Data Matrix Bar Code DLLs

Note: To use one or more preferences options, perform a logical OR using the desired preferences
constants and pass the result to the DLL in the Preferences variable in the TALMatrixCode data
structure.

For example to force the comment to appear below a bar code symbol using a bold font, you could
use the following code in Visual Basic:

Const Pref_CommentOnBottom = 4
Const Pref_FontBold = 1024
Dim MyBarCode as TALMatrixCode
MyBarCode.Preferences = Pref_CommentOnBottom OR Pref_FontBold

Pref_CommentOnBottom = 4
Instructs the DLL to place the comment text below the bar code. Normally the comment text is
placed above the bar code symbol.

Pref_AztecMenuCode = 16
Instructs the Aztec Code DLL (TALAztec.DLL or TALAzt32.DLL) to generate an Aztec Menu Symbol
instead of a normal Aztec code symbol.

Pref_Standard_ASCII = 16
Instructs the Data Matrix DLL (TALDM.DLL or TALDM32.DLL) to interpret all input data as standard
ASCII data. When this option is in effect, the Data Matrix DLL will not scan through the input data
looking for any special "Tilde Codes" and will encode all data in the input message as is - including
tilde characters. Tilde Control Codes are special codes that can be used to take advantage of
special features of Data Matrix including Function Codes (FNC1), Structured Append, and Extended
Channel Interpretation. They are called Tilde Control Codes because the tilde character (~) is used
to signal that the character(s) immediately following the tilde are to have special meanings to the
encoder. Please refer to the description of the Data Matrix symbology in this document for a
complete list of the available Tilde Codes.

Pref_FontBold = 1024
Causes the font for the human readable comment to be displayed in bold.

Pref_FontItalic = 2048
Causes the font for the human readable comment to be displayed in italics.

Pref_FontUnderLine = 4096
Causes the font for the human readable comment to be displayed underlined.

Pref_FontStrikeOut = 8192
Causes the font for the human readable comment to be displayed with a line through the center of
each character.

 69

Pref_AdjustToPrinterDPI = 32768
This option causes the DLL to adjust the module size to be as close as possible to an integer
multiple of the size of a single printer dot. Since a printer cannot print a partial dot, if the width or
height of the modules in a bar code are not an exact multiple of the size of a printer dot, the printer
driver will round the module width and height to get as close to a desired module size as it can. This
rounding can distort a bar code slightly because some modules might be rounded up and some
might be rounded down. Selecting this option causes the DLL to adjust the module size so that any
rounding performed by the printer driver will be minimized. If you enable this preference option then
you will also be required to supply values for the HorizontalDPI and VerticleDPI parameters to
indicate the resolution (in dots per inch) for the printer that you intend to output to.

Pref_MakeAldusMetaFile = 65536
This option causes the DLL to save MetaFiles to disk using the "Aldus Placeable MetaFile" format.
This format is a variation of the standard Windows MetaFile that is required by many popular
applications including all Microsoft Office applications (Word, Access and Excel, etc.)
Aldus Placeable MetaFiles are identical to standard Windows MetaFiles except that they have a
special 22 byte header that contains the overall dimensions of the graphic as well as a special code
that identifies the file as an Aldus Placeable MetaFile. This option is ignored except when outputting
bar codes to a disk based MetaFile (i.e. when the OutputOption variable is set to
"OutputToDiskFile").

 70

MaxiCode

MaxiCode is a fixed size matrix style symbology which is made up of offset rows of hexagonal
modules arranged around a unique bulls-eye finder pattern. Each MaxiCode symbol has 884
hexagonal modules arranged in 33 rows with each row containing up to 30 modules. The maximum
data capacity for a MaxiCode symbol is 93 Alphanumeric characters or 138 Numeric characters. The
symbology was designed by United Parcel Service for package tracking applications. The design of
the MaxiCode symbology was chosen because it is well suited to high speed, orientation
independent scanning. Although the capacity of a MaxiCode symbol is not as high as other matrix
style bar code symbologies, it was primarily designed to encode address data which rarely requires
more than about 80 characters. MaxiCode symbols actually encode two separate messages - a
Primary message and a Secondary message. The Primary message normally encodes a postal
code, a 3 digit country code and a 3 digit class of service number. The Secondary message normally
encodes address data and any other required information.

MaxiCode Modes:

The MaxiCode symbology specification defines several "Modes" that determine how data is encoded
in the symbol. The original MaxiCode specification supported modes 0 and 1 which are now
obsolete and are therefore not supported by the TAL MaxiCode DLLs. The current specification
supports the following Modes:

Mode 2 - Structured Carrier Message - Numeric Postal Codes (up to 9 digits)
Mode 3 - Structured Carrier Message - AlphaNumeric Postal Codes (up to 6 characters)
Mode 4 - Standard Symbol - Standard Error Correction
Mode 5 - Standard Symbol - Enhanced Error Correction (not supported by TAL DLL)
Mode 6 - Reader Programming Mode

Modes 2 and 3 are reserved for use as a destination sortation symbol for use by carriers in the
transportation industry. In Modes 2 and 3 a postal code, a country code and a service class number
must be supplied along with a secondary message usually consisting of an address.
Mode 4 is designed to encode data as a "standard bar code symbol" where the data encoded in the
symbol is not restricted to a specific application. In other words, Mode 4 should be used in all
general purpose bar code applications other than transportation industry applications. Mode 5 is
similar to mode 4 except that a higher level of error correction is employed. Because more symbol
real estate us used for error correction in Mode 5, the amount of actual data that can be encoded in
a Mode 5 symbol is reduced. The TAL MaxiCode bar code DLLs do not support Mode 5 at the time
of this writing.
Mode 6 is reserved for bar code reader programming purposes and it has been left up to the bar
code reader manufacturers to determine how to interpret data encoded using Mode 6.

 71

Structured Carrier Messages in Mode 2 and 3 MaxiCode Symbols:
The TAL MaxiCode DLLs provide input parameters for each of the three required Primary message
fields (Postal Code, Country Code and Service Class) as well as a parameter for the secondary
message (the MessageBuffer parameter). United Parcel Service has defined a special standard for
formatting data in a MaxiCode symbol for use in UPS package tracking applications. The standard
defines several things including the content and format of the data in the primary and secondary
messages, a special sequence of "header" characters, and the specific characters to be used as
delimiters or format codes and application identifiers. For complete details on how to encode
Structured Carrier Messages conforming to the UPS standards, please contact your local United
Parcel Service representative or visit the UPS web site at http://www.maxicode.com.
The TAL DLLs do not attempt to format the data in any way except in a special case as outlined
below. In other words, when you call the TAL MaxiCode DLLs to produce a Mode 2 or Mode 3 bar
code, you must provide all required data for the primary message and the data in the secondary
message must contain all required header, delimiter and special formatting characters.

As a convenience to the programmer, the TAL MaxiCode DLLs will automatically parse out a Postal
Code, the Country Code and the Service Class from any message that is passed in as a structured
carrier message starting with the character sequence: [)>RS01GSyy. In other words, if the input
message (passed in the MessageBuffer parameter) to the DLL starts with the string:
[)>RS01GSyyaaaaaaaaaGSbbbGScccGS where yy is a two digit year, aaaaaaaaa is a valid postal
code, bbb is a three digit country code and ccc is a class value, the TAL MaxiCode DLL will
automatically set the Postal Code, Country Code and Service Class parameters for the primary
message to the values embedded in the input message. These values will also be removed from the
secondary message.
(Note: The RS and GS symbols used above represent ASCII characters 30 and 29 respectively.)

For example, if the following message is supplied in the MessageBuffer parameter in the call to the
TAL MaxiCode DLL, the Postal Code, Country Code and Service Class will be extracted from the
MessageBuffer and placed in the Postal Code, Country Code and Service Class parameters
automatically so that you do not need to fill in these parameters in advance.

[)>RS01GS98152382802GS840GS001GS1Z00004951GSUPSNGS06X610GS159GS1234567GS1/1G

SGSYGS634 ALPHA DRIVEGSPITTSBURGHGSPARSEOT

If the above message is supplied in the MessageBuffer parameter in the call to the TAL MaxiCode
DLL with the mode set to 2 or 3, the Postal Code value "152382802" and the Country Code value
"840" and the Service Class value "001" will be removed from the secondary message and
automatically encoded in the primary message. The actual message that will be encoded in the
secondary message will be:

[)>RS01GS981Z00004951GSUPSNGS06X610GS159GS1234567GS1/1GSGSYGS634 ALPHA
DRIVEGSPITTSBURGHGSPARSEOT

Note: In Mode 2, the Postal Code parameter must be either a 5 or 9 digit number (all numeric
characters) and in Mode 3, the Postal Code may contain up to 6 AlphaNumeric characters.

 72

Calling the TAL MaxiCode bar code DLL

The TAL MaxiCode DLL requires a user defined type structure called a TALMaxiCode data type for
all input parameters. Almost all of the parameters in the TALMaxiCode structure are the same as the
parameters in a standard TALBarCode structure except for a few small differences and a few
additional parameters specific to the MaxiCode bar code symbology.
The structure of the TALMaxiCode data type is outlined below:

VB Type declaration for 16 bit TALMaxiCode data type

Type TALMaxiCode
 SymbolNumber As Integer ' Position of the symbol in a structured append sequence
 NumberOfSymbols As Integer ' Total number of symbols in a structured append sequence
 Mode As Integer ' MaxiCode mode (2,3,4 or 6)
 ZipCode As String * 12 ' Primary message postal code (modes 2 or 3 only)
 CountryCode As Integer ' Primary message country code (modes 2 or 3 only)
 Class As Integer ' Primary message service class (modes 2 or 3 only)
 MessageLength As Integer ' Length of data in the MessageBuffer string
 MessageBuffer As String * 140 ' Secondary message
 CommentLength As Integer ' Length of data in the CommentBuffer string
 CommentBuffer As String * 100 ' Comment
 FGColor As Long ' Foreground Color (RGB value)
 BGColor As Long ' Background Color (RGB value)
 MyFontName As String * 32 ' Font Name for Comment text
 MyFontSize As Integer ' Font Size in points
 TextColor As Long ' Text Color (RGB value)
 Orientation As Integer ' Orientation of Symbol (0-3)
 Preferences As Long ' Bit values
 OutputOption As Integer ' 0=Clipboard, 1=SaveToFile, 2=MetafilePict, 3=hDC
 OutputFilename As String * 68 ' ASCIIZ filename (null terminated)
 OutputhDC As Integer ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position in inches (when outputting to hDC)
 YPosInInches As Single ' Y page position in inches (when outputting to hDC)
 Reserved As Long
End Type

 73

VB Type declaration for 32 bit TALMaxiCode data type

Type TALMaxiCode
 SymbolNumber As Long ' Position of the symbol in a structured append sequence
 NumberOfSymbols As Long ' Total number of symbols in a structured append sequence
 Mode As Long ' MaxiCode mode (2,3,4 or 6)
 ZipCode As String * 12 ' Primary message postal code (modes 2 or 3)
 CountryCode As Long ' Primary message country code
 Class As Long ' Primary message service class
 MessageLength As Long ' Length of data in the MessageBuffer string
 MessageBuffer As String * 140 ' Secondary message
 CommentLength As Long ' Length of data in the CommentBuffer string
 CommentBuffer As String * 100 ' Comment
 FGColor As Long ' Foreground Color (RGB value)
 BGColor As Long ' Background Color (RGB value)
 MyFontName As String * 32 ' Font Name for Comment text
 MyFontSize As Long ' Font Size in points
 TextColor As Long ' Text Color (RGB value)
 Orientation As Long ' Orientation of Symbol (0-3)
 Preferences As Long ' Bit values
 OutputOption As Long ' 0=Clipboard, 1=SaveToFile, 2=MetafilePict, 3=hDC
 OutputFilename As String * 260 ' ASCIIZ filename (null terminated)
 OutputhDC As Long ' Output device context (when outputting to hDC)
 XPosInInches As Single ' X page position in inches (when outputting to hDC)
 YPosInInches As Single ' Y page position in inches (when outputting to hDC)
 Reserved As Long
End Type

Sample Visual Basic (16 bit) DLL Function Declaration for MaxiCode DLL:

Declare Function TALMAXI Lib "TALMAX16.DLL" (BC As TALMaxiCode, MetaPict As MetaFilePict) As Integer

Sample Visual Basic (32 bit) DLL Function Declarations for MaxiCode DLL:

Declare Function TALMAXI Lib "TALMAX32.DLL" (BC As TALMaxiCode, MetaPict As MetaFilePict) As Long

Important Note:
The MaxiCode DLL TALMAX16.DLL file requires a second DLL file named MXCODE16.DLL be
installed on the users system. Likewise, the TALMAX32.DLL file requires the file named
MXCODE32.DLL be installed. When you distribute an application that uses either TALMAX16.DLL
or TALMAX32.DLL, you must also include the dependent MXCODE16.DLL or MXCODE32.DLL file.
As with all DLL files, it is recommended that you install the DLLs in either the Windows/System
directory or in the directory where the calling application has been installed.

Obtaining the dimensions of a MaxiCode symbol without actually generating a bar code.
If you call either the 16 bit or the 32 bit TAL MaxiCode DLL with the OutputOption parameter set to 3
(i.e. OutputTohDC) and then supply the value 0 for the OutputhDC parameter, the DLL will fail the
call returning -1 however the MetaFilePict structure will be filled in with the overall dimensions of the
printed symbol in units of .01mm. This feature enables the programmer to retrieve the dimensions of
a symbol without actually generating a bar code.

 74

Parameters Specific to the MaxiCode symbology:

SymbolNumber and NumberOfSymbols
The MaxiCode symbology supports a feature called "Structured Append" that allows a long message
to be encoded in up to eight symbols. Each symbol in a Structured Append set contains an indicator
that specifies the total number of symbols in the set as well as the particular position in the
sequence for each given symbol. When you call the TAL MaxiCode DLL the SymbolNumber
parameter indicates the position of the current symbol in the sequence and the NumberOfSymbols
parameter specifies the total number of symbols in the sequence. The values for these parameters
may range from 1 to 8. For a single symbol that is not part of a structured append sequence, the
value 1 should be supplied for both the "SymbolNumber" and "NumberOfSymbols" partameters.

Mode
The current MaxiCode symbology specification supports 5 modes numbered 2 through 6.
Modes 2 and 3 are reserved for structured carrier messages for use by carriers in the transportation
industry. Mode 4 is designed for use as a "Standard Bar Code" where the ZipCode, Country Code
and the Service Class parameters are not used and only the data in the MessageBuffer parameter is
encoded in the bar code symbol. Mode 5 is similar to Mode 4 except that Mode 5 uses a higher level
of error correction. The TAL MaxiCode DLLs do not support Mode 5 in the current release of the
DLLs. Mode 6 is reserved for "Reader Programming" purposes and it is up to the bar code reader
manufacturer to determine how to interpret Mode 6 messages.

ZipCode
When generating Mode 2 or Mode 3 MaxiCode symbols, a postal code must be supplied that will be
encoded in the primary message within the symbol. Mode 2 should be used when generating a
structured carrier message for shipments within the U.S.A. therefore the postal code parameter must
consist of either a 5 or 9 digit postal ZIP Code (i.e. 5 or 9 numeric digits).
Mode 3 should be used when generating a structured carrier message for shipments outside the
United States. In Mode 3, the ZipCode parameter must consist of a valid postal code containing up
to 6 AlphaNumeric characters. The ZipCode parameter is encoded in the Primary message in the
symbol. The ZipCode parameter is defined as a fixed length string of 12 characters (and not 9
characters) to avoid errors caused by some compilers that require parameters in user defined type
structures to be aligned on four byte boundaries.

CountryCode
The Country Code is used in Mode 2 and Mode 3 symbols to identify the destination country for a
structured carrier message. This parameter is encoded in the Primary message in the symbol.

Class
The Class is used in Mode 2 and Mode 3 symbols to identify the service class for a structured carrier
message. This parameter is encoded in the Primary message in the symbol.

MessageLength and MessageBuffer
The MessageLength specifies the length of data in the MessageBuffer string. The MessageBuffer
parameter should contain either the Secondary message to be encoded in a Mode 2 or Mode 3
symbol or the complete message to be encoded in a Mode 4 or Mode 6 message. MaxiCode
messages may contain all characters in the ASCII or ANSI character set except ASCII or ANSI Null
characters (i.e. ASCII or ANSI 0).

 75

Preferences Constants used with the MaxiCode Bar Code DLLs

Note: To use one or more preferences options, perform a logical OR using the desired preferences
constants and pass the result to the DLL in the Preferences variable in the TALMaxiCode data
structure. For example to force the comment to appear below a bar code symbol using a bold font,
you could use the following code in Visual Basic:

Const Pref_CommentOnBottom = 4
Const Pref_FontBold = 1024
Dim MyBarCode as TALMatrixCode
MyBarCode.Preferences = Pref_CommentOnBottom OR Pref_FontBold

Pref_CommentOnBottom = 4
Instructs the DLL to place the comment text below the bar code. Normally the comment text is
placed above the bar code symbol.

Pref_CommentAlignCenter = 131072
Pref_CommentAlignRight = 262144
Causes the DLL to either center align or right align the comment text.

Pref_QuietZones = 8
Instructs the DLL to surround the bar code symbol with a small amount of white space (a quiet
zone). Quiet zones help insure that a bar code reader will be able to correctly determine the edges
of a symbol. If Quiet Zones are included, the TAL MaxiCode DLL will add white space of .88mm to
the left and right sides of each symbol and .76mm to the top and bottom of each symbol.

Pref_FontBold = 1024
Causes the font for the human readable comment to be displayed in bold.

Pref_FontItalic = 2048
Causes the font for the human readable comment to be displayed in italics.

Pref_FontUnderLine = 4096
Causes the font for the human readable comment to be displayed underlined.

Pref_FontStrikeOut = 8192
Causes the font for the comment to be displayed with a line through the center of each character.

Pref_MakeAldusMetaFile = 65536
This option causes the DLL to save MetaFiles to disk using the "Aldus Placeable MetaFile" format.
This format is a variation of the standard Windows MetaFile that is required by many popular
applications including all Microsoft Office applications (Word, Access and Excel, etc.)
Aldus Placeable MetaFiles are identical to standard Windows MetaFiles except that they have a
special 22 byte header that contains the overall dimensions of the graphic as well as a special code
that identifies the file as an Aldus Placeable MetaFile. This option is ignored except when outputting
bar codes to a disk based MetaFile (i.e. when the OutputOption variable is set to
"OutputToDiskFile").

 76

Sample 16 bit C/C++ DLL Function Declaration for MaxiCode DLL

extern "C"
{
int FAR PASCAL TALDMAXI (TALMaxiCode * barcode, METAFILEPICT * metapict);

TALMAXI TALMAX16.DLL MaxiCode
};

16 Bit C/C++ TALMaxiCode Type Structure

The following is a 16 Bit C/C++ declaration for the TALMaxiCode data type with comments indicating
the purpose of each individual data member.

typedef struct tag TALMaxiCode
{
 int SymbolNumber; // Position of symbol in structured append sequence
 int NumberOfSymbols; // Total # of symbols in structured append sequence
 int Mode; // MaxiCode mode (2,3,4 or 6)
 char ZipCode[12]; // Primary message postal code (modes 2 or 3)
 int CountryCode; // Primary message country code (modes 2 or 3)
 int Class; // Primary message service class (modes 2 or 3)
 int messageLength; // Length of message to be encoded
 char messageBuffer[140]; // Message buffer
 int commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 int fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 int orientation; // Rotation 0 - 3 for 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 int outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[68]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALMaxiCode;

 77

Sample 32 bit C/C++ DLL Function Declaration for MaxiCode DLLs

extern "C"
{
int WINAPI TALMAXI (TALMaxiCode * barcode, METAFILEPICT * metapict);

TALMAXI TALMAX32.DLL MaxiCode
};

32 Bit C/C++ TALMaxiCode Type Structure

The following is a 32 Bit C/C++ declaration for the TALMaxiCode data type with comments indicating
the purpose of each individual data member.

typedef struct tag TALMaxiCode
{
 long SymbolNumber; // Position of symbol in structured append sequence
 long NumberOfSymbols; // Total # of symbols in structured append sequence
 long Mode; // MaxiCode mode (2,3,4 or 6)
 char ZipCode[12]; // Primary message postal code (modes 2 or 3)
 long CountryCode; // Primary message country code (modes 2 or 3)
 long Class; // Primary message service class (modes 2 or 3)
 long messageLength; // Length of message to be encoded
 char messageBuffer[140]; // Message buffer
 long commentLength; // Length of comment
 char commentBuffer[100]; // Comment buffer
 COLORREF fgColor; // Foreground Color
 COLORREF bgColor; // Background Color
 char fontName[32]; // Font name for human readable text
 long fontSize; // Font size in points
 COLORREF textColor; // Text color - RGB color value
 long orientation; // Rotation 0 - 3 for 0, 90 , 180, 270 degrees
 long preferences; // Bit values as described below
 long outputOption; // 0=Clipboard, 1=File, 2=MetaFilePict, 3=hDC
 char outputFilename[260]; // ASCIIZ filename when saving to disk
 HDC outputDC; // Output device context when outputting to hDC
 float XPosInInches; // X page position (when outputting to hDC)
 float YPosInInches; // Y page position (when outputting to hDC)
 long reserved; // Reserved for future use
}
TALMaxiCode;

 78

Powerbuilder 16 Bit Declarations

integer imessagelength // TALBarCode Window Structure
character cmessagebuffer[100]
integer icommentlength
character ccommentbuffer[100]
integer inarrowbarwidth
integer ibarwidthreduction
integer ibarcodeheight
long lfgcolor
long lbgcolor
integer inarrowtowideratio
character cmyfontname[32]
integer imyfontsize
long ltextcolor
integer iorientation
long lpreferences
integer ihorizontaldpi
integer iverticaldpi
integer ioutputoption
character coutputfilename[68]
integer ioutputhdc
real rxposininches
real ryposininches
long lreserved

// MetaFilePict Window Structure
integer imapmode
integer ixdimension
integer iydimension
integer ihandle

// Sample TALCode39 function declaration
FUNCTION int TALCode39 (TALBarCode lstr_bc, REF MetaFilePict lstr_mfp) LIBRARY "TALC39.DLL"
TALBarCode lstr_bc // create a TALBarCode variable
MetaFilePict lstr_mfp // create a MetaFilePict variable
lstr_bc.imessagelength = 10 // set values for TALBarCode "lstr_bc" member variables
lstr_bc.cmessagebuffer = '1234567890' // fill in all required variables before the DLL call

// Note: In Powerbuilder, the easiest way to call the DLLs is to use the "OutputToClipboard"
// option and paste the bar code into a rich text edit box as in the following code:
rte_barcode.clear() // clear out a rich text edit window
ireturn = TALCode39(lstr_barcode, lstr_MetaFilePict) // call the DLL
if ireturn = 0 then // if return value is not zero
 rte_barcode.paste() // paste the bar code into the edit box
else // otheriwse
 messagebox("Bar Code Error", string(ireturn)) // display error
end if

 79

Error Codes Returned by the TAL Bar Code DLLs

1 = Invalid Message - Message is either empty or contains invalid characters
2 = Invalid message length - Message is too long
3 = Invalid comment length - Comment length is too long
4 = Invalid supplemental - UPC or EAN supplemental contains non numeric data
5 = Invalid supplemental length - UPC or EAN supplemental has other than 2 or 5 digits
6 = Invalid narrow bar width - Narrow bar width is either <= 0 or greater than 500
7 = Invalid bar width reduction/gain - Bar width reduction is not between -99% to 99%
8 = Invalid height - Height for standard bar codes must range from .1 to 200
9 = Invalid foreground or background color
 Colors must be either hex FFFFFFFF (transparent) or may range from 0 to hex FFFFFF
10 = Invalid orientation value - Orientation parameter is outside the allowable range of 0 - 3
12 = Invalid narrow to wide ratio - Must be a integer from 20 to 30 representing 2.0 to 3.0
13 = Invalid font size - Font size is either zero or greater than 1000
14 = Bar code too large - Overall dimensions of the bar code were too large
15 = Invalid printer resolution - Specified printer resolution was less than 72 DPI
16 = Filename not specified - Save to disk option was chosen with no file name specified.
17 = Unable to create metafile file
 Either a bad filename was specified or the DLL was unable to open file, etc...
18 = Invalid Device Context
 The output to hDC option was chosen but the device context (hDC) was not valid
19 = Invalid Output Option - OutputOption parameter must be between 0 and 3

Visual Basic Error Constant Declarations:
Global Const TALErr_InvalidMessage = 1
Global Const TALErr_InvalidMsgLen = 2
Global Const TALErr_InvalidCommentLen = 3
Global Const TALErr_InvalidSupplement = 4
Global Const TALErr_InvalidSupplementLen = 5
Global Const TALErr_InvalidBarWidth = 6
Global Const TALErr_InvalidBarWidthReduction = 7
Global Const TALErr_InvalidHeight = 8
Global Const TALErr_InvalidColor = 9
Global Const TALErr_InvalidOrientation = 10
Global Const TALErr_InvalidNarrowToWideRatio = 12
Global Const TALErr_InvalidFontSize = 13
Global Const TALErr_BarCodeTooLarge = 14
Global Const TALErr_InvalidPrinterResolution = 15
Global Const TALErr_MissingFileName = 16
Global Const TALErr_UnableToCreateMetafile = 17
Global Const TALErr_InvalidDeviceContext = 18
Global Const TALErr_ InvalidOutputOption = 19

	Contents:
	License Agreement:
	Introduction
	Installing The Bar Code DLLs On Your Computer
	Getting Started
	Overview of graphics programming in Windows
	All about Windows MetaFiles
	How to use the TAL Bar Code Libraries
	Function names and DLL files for creating different bar code symbologies.

	16 Bit DLL Declarations and Type Structures
	Sample Visual Basic (16 bit) DLL Function Declaration Statements:
	Sample C/C++ (16 bit) DLL Function Declaration Statements:
	16 Bit Visual Basic TALBarCode Type Structure
	16 Bit MetaFilePict Type Structure
	16 Bit C/C++ TALBarCode Type Structure
	16 Bit TALBarCode Type Structure Elements
	16 Bit Visual Basic TALPDFBarCode Type Structure
	16 Bit C/C++ TALPDFBarCode Type Structure
	16 Bit TALPDFBarCode Type Structure Elements

	32 Bit DLL Declarations and Type Structures
	Sample Visual Basic (32 bit) DLL Function Declaration Statements:
	Sample C/C++ (32 bit) DLL Function Declaration Statements:
	32 Bit Visual Basic TALBarCode Type Structure Declaration
	32 Bit Visual Basic MetaFilePict Type Structure Declaration
	32 Bit C/C++ TALBarCode Type Structure Declaration
	32 Bit TALBarCode Type Structure Elements
	32 Bit Visual Basic TALPDFBarCode Type Structure Declaration
	32 Bit C/C++ TALPDFBarCode Type Structure Declaration
	32 Bit TALPDFBarCode Type Structure Elements
	TALBarCode Data Type Member Descriptions and Notes
	Parameters Specific to the TALPDFBarCode Type Structure
	Preferences Options and Constants:

	Bar Code Dimensions
	Bar Code Basics
	How A Bar Code Reader Works
	How To Produce Readable Bar Codes
	A Word About Graphic File Formats
	Bitmaps (Raster Graphics)
	Vector Graphics and MetaFiles
	About The New Enhanced MetaFile Format

	Special Considerations and Incompatibilities
	Pasting Bar Codes From The Clipboard Into 32 bit Programs
	Printing Bar Codes On A Dot Matrix Printer

	Bar Code Symbology Descriptions and Rules
	CODE 39 (Normal, Full ASCII and HIBC versions)
	UPC-A, UPC-E, and UPC Supplementals
	EAN-8 / EAN-13, BookLan and EAN Supplementals
	UPC and EAN Magnification Factors
	CODE 93
	CODABAR
	INTERLEAVED 2 OF 5 (ITF)
	MSI-PLESSEY
	CODE 128
	EAN/UCC 128
	POSTNET
	Postal FIM Patterns
	PDF417
	PDF417 Bar Code Dimensions
	PDF417 Data Compaction Modes
	PDF417 Error Detection and Correction
	Truncated PDF417 Symbols
	PDF417 Options.
	16 Bit C/C++ TALMatrixCode Type Structure
	32 Bit C/C++ TALMatrixCode Type Structure
	16 Bit C/C++ TALMaxiCode Type Structure
	32 Bit C/C++ TALMaxiCode Type Structure

	Powerbuilder 16 Bit Declarations
	Error Codes Returned by the TAL Bar Code DLLs

